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Abstract and Acknowledgements

This thesis applies graphon theory [29] to a classification problem for weighted graphs
[24]. It connects the theoretical literature on dense graph limits to applied literature on
feature-based classification with graph data.

Chapter 2 and Section 4.1 briefly review the literature on graph limits, and introduce
binary classification problems. As these sections contain known results, we do not
strive for originality. The other sections of this thesis contribute to the study of the
statistics of weighted graphs. Our inquiry is led by the following three questions.

Firstly, whether there are weighted generalisations of known sample concentration res-
ults for unweighted graph limits. We will formulate our results using a general data-
generating model, which we term decorated graphons, Definition 3.1. Motivated by short-
comings of the previous study [28] on weighted graph limits, we consider analogues of
homomorphism densities and the cut norm for which we show sample concentration.
This is the content of Chapter 3 with Theorem 3.7 as central result.

A second question is in how far applied approaches to graph classification can be for-
mulated in the language of random graph models. In Section 4.2, we translate popular
graph kernels from the applied literature into the language of random graph models.

The last question is whether one can prove bounds relevant for feature-based learning
in a random graph model. In Chapter 5, we show two stability estimates bounding
the variation of features from above by variations of their data-generating processes.
We do this for our adapted notion of homomorphism densities, suppyling a theoretical
foundation for the graph kernels presented in Section 4.2 that were originally defined
in an ad-hoc manner. We also present and prove a stability estimate that characterises
homomorphism densities of cycles, closing a gap in the applied literature. The latter
proof combines approximation techniques, KANTOROVICH duality and identities from
graph theory. The combination of these tools might be of use for showing stability of a
larger class of features.

Acknowledgements I would like to thank my supervisor Ngoc Mai Tran for introdu-
cing me to exchangeability and the mathematics of machine learning. I am grateful
for her guidance and support throughout the past 14 months. Moreover, I thank my
friends and family for their patience and trust.
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1 Notation

In thesis we use tools from probability and graph theory. We collect some notation used
throughout this thesis here.

Graphs We consider graphs only up to isomorphism: A node-labelled weighted finite
graph is a tripel (V, E, c), where V the finite node set, E ⊆ (V

2) is the edge set and
c : E→ R is a weight function. A weighted graph isomorphism between weighted graphs
G = (V, E, c) 7→ G′ = (V ′, E′, c′) is a bijective function φ : V → V ′ such that {i, j} ∈ E
if and only if {φ(i), φ(j)} ∈ E′ for any i, j ∈ V and and c({i, j}) = c′({φ(i), φ(j)}) for
any {i, j} ∈ E. An equivalence class of node-labelled weighted graphs modulo this
isomorphism is called a weighted graph. A complete weighted graph (V, c) is a weighted
graph with E = (V

2). We view an unweighted graph (V, E) as a complete weighted
graph by assigning edges weight one and non-edges weight zero. We denote the set
of finite unweighted graphs by F and the set of unweighted graphs on n nodes by
Fn. We view adjacency matrices as equivalence classes up to joint permutations of
rows and columns; then graphs and adjacency matrices correspond one-to-one. We use
pictograms do denote small graphs: By we denote the complete unweighted graph
on 3 nodes (K3), by the graph on 2 nodes containing one edge (K2) and by the graph
with one node (K1).

Probability The law of a random variable X on (Ω,A, P) will be denoted by L(X) =
P ◦ X−1. We denote by UnifV the uniform distribution on a finite set V and by Unif[0,1]
the uniform distribution on the unit interval. Bernp is the BERNOULLI distribution with
parameter p. For a measurable space (M,A) we denote by P(M) the set of probability
measures on M. Given a measure ν ∈ P(M), its f -fold product is νn. If ν ∈ P(R), Eν
denotes ν’s expectation. Denote by δx the DIRAC mass at x. The symbol ⊥⊥ signifies in-
dependence of random variables. For f : (M,A)→ (M′,A′) measurable and a measure
ν ∈ P(M) we denote by f∗ν : A′ → R, f∗ν[A] = ν[ f−1(A)] the pushforward measure of
f under ν. Finally, we call φ : ([0, 1],B([0, 1])) → ([0, 1],B([0, 1])) measure-preserving
if φ∗Unif[0,1] = Unif[0,1].

Miscallena Let F : (M, ‖ • ‖) → (N, ‖ • ‖′) be a compact linear operator. Denote by
Λ(F) the spectrum of F. For sequences (an) and (bn) we use the LANDAU notation

(an) ∈ O(bn) ⇐⇒ lim sup
n→∞

an

bn
< ∞
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1 Notation

(an) ∈ o(bn) ⇐⇒ lim sup
n→∞

an

bn
= 0

(an) ∈ ω(bn) ⇐⇒ lim inf
n→∞

an

bn
> 0.

Denote by τx : R → R, τx(y) = x + y the translation map. Denote also by A4B the
symmetric difference of sets A, B.
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2 Graphons

We review the theory of unweighted graph limits based on graphons as introduced in
[29]. In Section 2.1 we define random graph models and show which of these can be
represented as sampling from exchangeable arrays. Then, we proceed to shows that
exchangeable arrays are mixtures of graphons and characterise weak convergence of
exchangeable arrays by convergence of homomorphism numbers in Section 2.2. Finally,
in Section 2.3, we define a metric structure on the space of graphons.

2.1 Exchangeability and Aldous-Hoover’s Representation
Result

We start by observing that exchangeable arrays and random graph models are intim-
ately related.

A random graph model is a family (νn)n∈N of probability measures such that each νn is a
measure on the set Fn of graphs on n nodes. Let πn : Fn → Fn−1 be the restriction of
an n× n adjacency matrix to its n− 1 first rows and columns. A random graph model
(νn)n∈N is projective if

νn ◦ π−1
n = νn−1.

Definition. Let X = (Xij)i,j∈N : (Ω,A, P)→ RN×N be a random variable. We say that X is
an exchangeable array (or exchangeable) if

X D
= (Xσ(i)σ(j))i,j∈N,

where σ is a finite permutation of N. We call X symmetric if (Xij)i,j∈N
a.s.
= (Xji)i,j∈N.

Let X be a symmetric exchangeable array. Denote by Xk = (Xij)1≤i,j≤k the initial k-
subarray of X. The measure G(k, X) := L((Xij)1≤i,j≤k) is the k-sampling measure.

Proposition 2.1 ([27, paragraph 11.2.2]). The random graph model (νn)n∈N is projective if
and only if there is a binary symmmetric exchangeable array X such that

νn = L(Xn)

for all n ∈N.
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2 Graphons

We need one further definition to be able to present a seminal result characterising
the distributions of symmetric exchangeable arrays, in particular, all projective random
graph models.

Definition. A symmetric exchangeable array X is local if

(Xij)i∈I,j∈J ⊥⊥ (Xij)i∈I′,j∈J′

for any I, J, I′, J′ ⊆N such that I ∩ I′, J ∩ J′ = ∅.

Theorem 2.2 (Aldous-Hoover, [2, 19], [27, Theorem 11.52], [23, Theorem 7.35]). A sym-
metric exchangeable array X can be represented as follows: There is a random function F : [0, 1]3

→ R, that is symmetric in its first two arguments such that

(Xij)i,j∈N
D
= (F(Ui, Uj, U{i,j}))i,j∈N (2.1)

where (Ui)i∈N and (U{i,j})i,j∈N are a sequence resp. an array of iid Unif[0,1]-variables, which
are independent of F.

In addition, the function F is deterministic if and only if X is local.

Clearly, for any function F : [0, 1]3 → [0, 1] that is symmetric in its first two arguments,
the array sampled according to (2.1) is exchangeable and local. Therefore, by means
of 2.2, one can parametrise distributions of symmetric local exchangeable arrays by
functions F : [0, 1]3 → [0, 1] that are symmetric in their first two arguments. In the
case of binary arrays Xij ∈ {0, 1}, we even get an easier parametrisation by symmetric
functions [0, 1]2 → [0, 1].

Corollary 2.3. If X is a local, exchangeable, symmetric, and binary array then there is a sym-

metric function W : [0, 1]2 → [0, 1] such that U1, U2 . . . iid∼ Unif[0,1] and Xij
ind∼ BernW(Ui ,Uj).

Proof. Let F and Ui, i ∈ N, U{j,k}, j, k ∈ N be as in Theorem 2.2. The claim follows
by the independence of (Ui)i∈N and (U{i,j})i,j∈N if we show the following: There is a
symmetric function W : [0, 1]2 → [0, 1] such that

F(Ui, Uj, U{i,j})
D
= 1{(x,y,z)|z≤W(x,y)}(Ui, Uj, U{i,j}). (2.2)

To prove (2.2) define

W(x, y) := E[F(x, y, U)], U ∼ Unif[0,1]

Then

P[F(Ui, Uj, Uij) = 1] = E[F(Ui, Uj, Uij)] = E[E[F(Ui, Uj, Uij)|Ui, Uj]]

= E[W(Ui, Uj)] = P[U{i,j} ≤W(Ui, Uj)].
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2.2 Homomorphism Densities

Let X be a symmetric, exchangeable, local array and let W be as in Corollary 2.3. Denote
G(∞, W) := L(X) and G(k, W) := L(Xk) the infinite respectively k-sampling. We now
restrict to the binary case Xij ∈ {0, 1}. The next result characterises classes of functions
W : [0, 1]2 → [0, 1] that induce the same sampling distributions G(∞, W).

Proposition 2.4 ([27, Corollary 10.35 (a)]). Let W, W ′ : [0, 1]2 → [0, 1] be symmetric func-
tions. Then the following are equivalent:

(1) G(∞, W) = G(∞, W ′),

(2) G(k, W) = G(k, W ′) for any k ∈N,

(3) There are measure-preserving maps φ, φ′ : [0, 1] → [0, 1] such that Wφ a.s.
= W ′φ

′
, where

Wφ : [0, 1]2 → [0, 1], (x, y) 7→W(φ(x), φ(y)).

This result motivates the following central definition.

Definition 2.5. A graphon W is an equivalence class of functions W : [0, 1]2 → [0, 1] modulo
measure-preserving transformations, i.e. W ∼ W ′ if and only if there is a measure-preserving
function φ : [0, 1]→ [0, 1] such that Wφ(x, y) = W ′(x, y).

2.2 Homomorphism Densities

Also subsampling from a finite graph can be interpreted as a grahpon. Let G = (V, c)
be a weighted graph. Then interpret the adjacency matrix of G in a chessboard fashion
as a graphon WG: On squares of length and width 1

|V| let WG take the values of each
entry in the adjacency matrix. An example of this embedding is given in Figure 2.1.
Having this embedding, one can study convergence of the subsampling distributions
of graph sequences (Gn)n∈N, G(∞, WGn). We would like to characterise weak conver-
gence of G(∞, WGn) and for more general graphons in terms of interpretable statistics
of graphs.

Definition 2.6. Let W be a graphon and F be a finite unweighted graph. Define the induced
homomorphism density, respectively the homomorphism density of F in W as

tind(F, W) := G(|V(F)|, Wn)[{F}]
t(F, W) := G(|V(F)|, Wn)[{G|E(G) ⊇ E(F)}].

{G ∈ V(Fn)|E(G) ⊇ E(F)} is the set of all graphs which contain F as a subgraph.

The following proposition shows that convergence of homomorphism densities charac-
terises weak convergence. Formulas for computing homomorphism densities are given
at the end of this section. These will be employed throughout this thesis.
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2 Graphons

(a) Graph

0 1 1
1 0 1
1 1 0


(b) Its adjacency matrix (c) Graphon [0, 1]2 → [0, 1]

Figure 2.1: A graph, its adjacency matrix and the corresponding graphon.

Proposition 2.7. Let (Wn)n∈N be a sequence of graphons and W be a graphon. The following
are equivalent:

(1) G(∞, Wn)
w−→ G(∞, W),

(2) G(k, Wn)
w−→ G(k, W) for any k ∈N,

(3) tind(F, Wn)→ tind(F, W) for any F ∈ F , and

(4) t(F, Wn)→ t(F, W) for any F ∈ F .

Proof. (1) is equivalent to (2) by the definition of weak convergence for infinite index
sets. (2) is equivalent to (3) as (tind(F, W))F∈Fk is the probability mass function of the
discrete measure G(k, W) and weak convergence of discrete distributions is equivalent
to pointwise convergence of the probability mass function. Finally, also (3) is equival-
ent to (4): This follows as tinj and t satisfy linear equivalences [27, (7.4), (7.5)].

Proposition 2.8. Let W be a graphon. Then

t(F, W) =
∫
[0,1]|V(F)| ∏

{i,j}∈E(F)
W(xi, xj)d Unif|V(F)|

[0,1] ((xk)k∈V(F)). (2.3)

In particular, for a weighted graph G = (V, c), this read

t(F, WG) =
∫

∏
{i,j}∈E(F)

c({xi, xj})d Unif|V(F)|
V(G)

((xk)k∈V(F)). (2.4)

The following, we will use in an example at the end of this chapter. We observe, that if
if G is unweighted and loopless then

t( , WG) =
∫

c({xi, xj})d Unif2
V(G)(xi, xj) = ∑

i,j∈V(F)
c({i, j}) = |E(G)|

8



2.3 Cut Distance

2.3 Cut Distance

In the following, we give the set of graphons metric structure which allows for the
introduction of analytic techniques to problems of graph limits.

Definition. Let W, W ′ be graphons.

• Their cut distance is

δ�(W, W ′) := inf
φ

sup
S,T⊆[0,1]

∣∣∣∣∫S×T
W(x, y)−W ′(φ(x), φ(y))d Unif2

[0,1](x, y)
∣∣∣∣ (2.5)

where the infimum is taken over all measure-preserving transformations φ : [0, 1] →
[0, 1].

• The cut norm is defined as ‖W‖� := δ�(W, 0), where 0 is the zero graphon.

We note that the cut norm does not induce the cut distance. The name cutdistance
comes from graph cuts: If G is a weighted graph, then ‖WG‖� is equal to the size of
a maximum cut in the graph G. The following three properties along with its explicit
definition (2.5) make cut distance a natural notion of similarity of graphs.

Theorem 2.9 ([8, Theorem 3.7]). The topology of weak convergence is metrised by δ�.

Theorem 2.10 ([27, Theorem 11.3]). If the set of graphons is given the topology induced by
δ�-convergence, then ({graphons}, δ�) ∼= clδ�(F ), i.e. the set of graphons is the closure of the
set of unweighted graphs with respect to δ�.

Theorem 2.11 ([30, Theorem 5.1]). The metric space ({graphons}, δ�) is compact.

In more general models for random graphs such as [44] or the model we are going
to study in the rest of this thesis, an analogue of the cut distance that metrises weak
convergence has not been found.

Statements relating the cut distance to sampling by G(k, W) such as the following hold
however in the more general setting we consider.

Theorem 2.12 (Sampling Lemma, [8, Theorem 2.7 (a)]). Let Wn ∼ G(n, W) be sampled
from a graphon W. Then there is an exponential tail bound on δ�(Wn, W) around zero. In
particular, Wn

a.s.−→W with respect to the metric δ�.

Theorem 2.13 (Counting Lemma, [8, Theorem 2.9]). For any finite unweighted graph F,
the function t(F, •) : ({graphons}, δ�)→ (R, |·|) is LIPSCHITZ-continuous.

We will give quantitative versions of Lemma 2.12 and Lemma 2.13 below. To con-
clude this section, we illustrate by an example that the structure of the metric space of
graphons has relevance even for purely combinatorial questions.
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2 Graphons

Example (Extremal Graph Theory). Consider the following problem posed and answered by
TURÀN [43]: “What is the maximum possible number of edges in an undirected graph G with
n vertices that does not contain as a subgraph?” If more complex subgraphs than were
forbidden, it would not be clear whether this problem has a solution, i.e. whether the maximum
is attained. We can reformulate the problem into a problem of graph limits using homomorphism
densities: As we showed below Proposition 2.8, the number of edges is proportional to the density
of edges in a graph G,

t( , G) =
|E(G)|

n2 .

Furthermore, the number of triangles is proportional to the density of triangles

t( , G) =
# in G

n3 .

Hence, TURÀN’s problem is equivalent to

max t( , G) such that t( , G) = 0

We know that the the functions t( , •) and t( , •) are Lipschitz continuous (Theorem 2.13) on
the compact space of graphons (Theorem 2.11). Hence, the maximum will be attained. If one
can show that the maximum is attained by block models, that is, images of graphs under the
embedding given at the end of the last subsection, the problem is solved. This can indeed be
done, see [27, Theorem 16.14].

10



3 Weighted Graph Limits

We turn our focus to limits of weighted graphs. Their convergence has been studied via
homomorphism densities in [28]. After giving the definition of the central object of this
study, we review the approach of [28] and argue why it has shortcomings in a statistical
setting.

In an effort to address these shortcomings, we study concentration of homomorphism
densities. We generalise results known for graphons, in particular Theorem 2.12 and
concentration of homomorphism density for the definition put forward.

In the following, we shall make the silent assumption

Xij ∈ [0, 1], ∀i, j ∈N. (A)

Results for general edge weights on a compact subset of R can be obtained by an ap-
propriate scaling.

3.1 Definitions

The following is the central object of study in this thesis.

Definition 3.1. A family of measures

W = (W(x, y))x,y∈[0,1] ⊆ P([0, 1])

is called a decorated graphon. Sampling an exchangeable array X from a decorated graphon
W is as

U1, U2, . . . ∼ Unif[0,1] Xij
iid∼ W(Ui, Uj).

If Xk is X’s initial k-subarray, then we denote G(∞,W) := L(X) and G(k,W) := L(Xk).

It is worth pointing out that decorated graphons are not defined as equivalence classes,
in contrast to Definition 2.5. Therefore, it may happen that G(∞,W) = G(∞,W ′) even
if W 6= W ′. The following propositions however show that all distributions of ex-
changeable arrays can be viewed as sampled from some decorated graphon.

11



3 Weighted Graph Limits

Proposition. For any local, exchangeable, symmetric array, there is a family of measures
(W(x, y))x,y∈[0,1] ⊆ P([0, 1]) such that W(x, y) = W(y, x) for every x, y ∈ [0, 1] such
that L(X) = G(∞,W).

U1, U2 . . . iid∼ Unif[0,1] (Xij)i,j∈N
iid∼ W(Ui, Uj), i, j ∈N. (3.1)

Proof. Let F be the deterministic function from Theorem 2.2. For each x, y ∈ [0, 1],
define a random variable

W(x, y) = F(x, y, U). (3.2)

Define the measure W(x, y) := L(W(x, y)). The family of measures (W(x, y))x,y∈[0,1]
then satisfies L(X) = G(∞,W).

Definition 3.2. LetW = (W(x, y))x,y∈[0,1] be a decorated graphon. Its expectation graphon
is defined as

EW : [0, 1]2 → [0, 1], (x, y) 7→ E[W(x, y)].

As promised, we now discuss the approach of [28]. The authors consider homomorph-
ism densities of unweighted graphs F with continuous, compactly supported functions
attached to edges, c : E(F) → C0

c ([0, 1]) and characterise weak convergence by simul-
taneous convergence of all homomorphism densities as in Theorem 2.7.

The definition of their homomorphism densities is

t(F, W) =
∫
[0,1]|V(F)| ∏

{i,j}∈E(F)

(∫
c({i, j})dW(x, y)

)
d Unif|V(F)|

[0,1] , (3.3)

that is, they compute for each function c({i, j}) associated to an edge {i, j} the value of
the linear functional f 7→

∫
f dW(x, y) associated toW(x, y), x, y ∈ [0, 1] and integrate

with respect to the uniform measure, cf. (2.3). The characterisation uses the one-to-one
correspondence of probability measures and positive functionals [34, Theorem 2.14].
Let us point out three shortcomings for statistical analysis in this study.

(1) The authors of [28] do consider sampling from some random object explicitly,
which is necessary in a statistical setting. In particular, they do not provide con-
centration results.

(2) As for each edge separately an infinity of functions has to be considered, their
result is inherently infinite even for graphs F with a fixed number of nodes.

(3) The authors give no interpretation of the graphons
∫

c({i, j})dW(x, y).

Our approach may be rephrased as considering homomorphism densities of type (3.3)
in which every edge is assigned the function f = 1[0,1] and we embed graphs as in
the example following this discussion. The choice f = 1[0,1] makes the problem finite,
addressing (2). In this setting, we are able to generalise concentration results known

12



3.1 Definitions

from graphon theory, formulating our results with reference to sampling from an infin-
ite exchangeable array. This is a remedy for shortcoming (1). Finally, we interpret the
graphon

∫
c({i, j})dW(x, y), which is by our choice of c({i, j}) independent of {i, j} as

the expectation graphon, a remedy for shortcoming (3).

Before defining our homomorphism densities of finite-size samples, we give examples
of decorated graphons. More can be found in [27, Example 17.1–4].

Example (Embeddings). Graphs Let G = (V, c) be a weighted graph. Let WG be the
graphon associated to G as defined on page 8. DefineWG as the decorated graphon that
puts DIRAC mass on WG(x, y) at point (x, y); in formulas, WG = (δWG(x,y))x,y∈[0,1].
The corresponding expectation graphon is WG.

Graphons Let W : [0, 1]2 → [0, 1] be a graphon. Then (BernW(x,y))x,y∈[0,1] is a decorated
graphon with G(k, W) = G(k, (BernW(x,y))x,y∈[0,1]), where the left is sampled from a
graphon, the right from a decorated graphon. The corresponding expectation graphon is
W.

Noisy Graphon Let W be a graphon and let ν ∈ P(R) be a probability measure such that
supp(τW(x,y))∗ν ⊆ [0, 1]. Denote by N(W, ν) the decorated graphon.

N(W, ν) : [0, 1]2 → P([0, 1]), (x, y) 7→ (τW(x,y))∗ν

This decorated graphon adds noise according to ν to a graphon W. Its expectation graphon
is W.

It is an interesting open problem whether one can characterise weak convergence as
in Theorem 2.9 for an appropriate (quasi-)metric on the space of decorated graphons.
Lovàsz claims in [27, p. 324] the existence of such a metric, but “it is awkward to define
[it] [. . . ] and prove its basic properties”.

Formulas (2.3) and (2.5) involve integrals and therefore evaluate a graphon at uncount-
ably many points. Decorated graphons as in Definition 3.1, however, are uninformative
about the joint distribution of uncountably many marginals. Therefore, we discretise by
sampling an increasing sequence of finite weighted graphs from a decorated graphon
and consider limits of homomorphism densities resp. cut distances. As in the follow-
ing, we will consider subsampling from an array that was sampled from a decorated
graphon, we give such arrays a different name.

Definition. Let W be a decorated graphon. Let X ∼ G(∞,W). Then call Xn a random
n-block model.

We sample the binary array (Yij)1≤i,j≤k from a random n-block model Xn as follows:

U1, . . . , Uk
iid∼ Unif[n] Yij ∼ BernXij . (3.4)

13



3 Weighted Graph Limits

The interpretation as a subsampling scheme is as follows: In a first step, sample a ran-
dom block model from a decorated graphon. In a second step, subsample nodes with
replacement from the block model and include edges between the sampled vertices
with probability equal to the block model’s edge weights.

Definition. Let Xn be a random n-block model and F be an unweighted graph. Define the
homomorphism density by

t(F, Xn) := G(|V(F)|, Xn)[{H|E(H) ⊇ E(F)}].

Paralleling the case of graphons, one has

t(F, Xn) =
∫

∏
{i,j}∈E(G)

Xxjxj d Unif|V(F)|
[n] ((xk)k∈V(F)). (3.5)

It will be useful to denote the random variable tn(F,W)(ω) := tn(F, Xn(ω)), for W a
decorated graphon and X ∼ G(∞,W).

In the next section, we will make use of the following related notion of a density, which
closely approximates the homomorphism density.

Definition 3.3. Let F be an unweighted graph, X ∼ G(∞,W). Let Inj(V(F), V(G)) denote
the set of injections V(F) ↪→ V(G). View injections as vectors of disjoint elements (xk)k∈V(F),
xk ∈ V(G). Then the injective homomorphism density is

tinj(F, G) :=
∫

∏
{i,j}∈E(F)

Xxixj d UnifInj(V(F),V(G))((xk)k∈V(F)).

Proposition ([29, Lemma 2.1.]). Let F be an unweighted graph and G be a block model. Then

|tinj(F, G)− t(F, G)| ≤ 1
|V(G)|

(
V(F)

2

)
(3.6)

3.2 Concentration around Expectation Graphon

In the case of graphons, homomorphism densities are highly concentrated [27, Corol-
lary 10.4]. In this section, we show that such results also hold in the case of decorated
graphons and that there is even concentration of samples in cut distance.

More explicitely, if X ∼ G(∞,W), X′ ∼ G(∞,W ′), then

tn(F,W)
a.s.−−−→

n→∞
t(F, EW) (3.7)

δ�(Xm, X′n)
a.s.−−−−→

m,n→∞
δ�(EW , EW ′). (3.8)

14



3.2 Concentration around Expectation Graphon

Equation (3.7) reveals that sampling as in Definition 3.1 will only give information
on the expectation graphon in the limit. On the other hand, Proposition 2.7 shows
that the ensemble of homomorphism densities characterises the expectation graphon.
Hence, using limits of homomorphism densities tn exactly characterises the expectation
graphon. A similar interpretation can be given for the convergence of cut norm (3.8).

We will generalise known result for the theory of graphons as follows: As a first result,
in Theorem 3.4, we show that tn(F,W) converges a.s., using an idea that was outlined
for unweighted graph limits in [15, Remark 5.1]. We then identify the limit and prove
concentration of tn(F,W) around the homomorphism densities t(F, EW) of the expect-
ation graphon in Theorem 3.7. This is the main result of this section and will establish
(3.7) in Corollary 3.8. The strategy of proof will be to generalise [8, Lemma 4.4]. Finally,
we give a bound on distances |tn(F,W)− tn(F,W ′)| in Theorem 3.11.

Theorem 3.4. Let F be a finite unweighted graph and X ∼ G(∞,W). Consider the descending
filtration F−n = σ((Xij)(i,j)/∈[n]×[n]) and define Mn := tinj(F, Xn). Then (Mn)n≥|V(F)| is a
reverse martingale.

The following lemma appears without proof in [27, (5.27)].

Lemma 3.5. Let F be a finite unweighted graph and X ∼ G(∞,W). Let |V(F)| ≤ t ≤ n.
Then

tinj(F, (Xij)1≤i,j≤n) =
1
(n

t)
∑

S∈([n]t )

E[tinj(F, (Xij)i,j∈S)|(Xij)(i,j)/∈(S×[n]4[n]×S)]. (3.9)

Proof. Observe the following: If (xA){A⊆[n]||A|=k} is an array indexed by all k-subsets of
a ground set n, then for S([n]) denoting the symmetric group acting on [n],

∑
i1,...,ik∈[n]

distinct

ain,...,ik = ∑
A⊆[n]
|A|=k

∑
σ∈S([n])

xσ(A) = ∑
A⊆[n]
|A|=k

∑
σ∈Inj([k],A)

xσ(A), (3.10)

where the symmetric group acts on subsets of n by permuting the increasing order of
elements.

It suffices to prove (3.9) for t = |V(F)| (the case t > |V(F)| reduces to this case by apply-
ing (3.9) with t = |V(F)| to each summand). We may assume without loss of generality
that V(F) = [k]. Noting that |Inj([k], V(G))| = n!

(n−k)! , we obtain for En the conditional

expectation E[•|Xn] and E′n for the conditional expectation E
[
•
∣∣∣(Xij)(i,j)/∈(S×[n]4[n]×S)

]
tinj(F, Xn) = En

∫
∏

{i,j}∈E(F)
Xxixj d UnifInj(V(F),V(G))((xk)k∈V(F))

= En
(n− k)!

n! ∑
i1,...,ik∈V(G)

distinct

∏
{j,k}∈E(G)

Xijik

15



3 Weighted Graph Limits

= En
(n− k)!

n! ∑
A⊆[n]
|A|=k

∑
σ∈Inj([k],A)

∏
{i,j}∈E(G)

Xσ(i)σ(j)

= E′n
(n− k)!

n! ∑
A⊆[n]
|A|=k

∑
σ∈Inj([k],A)

∏
{i,j}∈E(G)

Xσ(i)σ(j)

= E′n
(n− k)!k!

n! ∑
A⊆[n]
|A|=k

1
k! ∑

σ∈Inj([k],A)
∏

{i,j}∈E(G)

Xσ(i)σ(j)

= E′n
(n− k)!k!

n! ∑
A⊆[n]
|A|=k

∫
∏

{i,j}∈E(F)
Xxixj d UnifInj(V(F),V(F))((xk)k∈V(F))

= E′n
1
(n

k)
∑

A⊆[n]
|A|=k

tinj(F, (Xi,j)i,j∈S).

In going from the second to the third line we used (3.10), from the third to fourth we
used independence and measurability and to get to the last line, we used the definition
of injective homomorphism densities.

Proof of Theorem 3.4. As 0 ≤ Mn ≤ 1 a.s., integrability is trivial.

Fix n > |V(F)|. As an instance of exchangeability, we have

E[tinj(F, (Xij)1≤i,j≤n−1)|(Xnj)1≤j≤n] =
1
n

n

∑
`=1

E[tinj(F, (Xij)i,j∈[n]\{`})|(X`j)1≤j≤n],

Hence, by Lemma 3.5,

tinj(F, Xn) =
1
n

n

∑
`=1

E[tinj(F, (Xij)i,j∈[n]\{`})|(X`j)1≤j≤n]

= E[tinj(F, (Xij)1≤i,j≤n−1)|(Xnj)1≤j≤n].

Conditioning on (Xij)(i,j)/∈[n]×[n], the claim follows.

Corollary 3.6. LetW be a decorated graphon and F ∈ F . Then limn→∞ tn(F,W) exists a.s.

Proof. Note that for any n ≥ |V(F)|,

tinj(F, (Xij)1≤i,j≤n) = Mn.

Applying the reverse martingale convergence theorem [16, Theorem 5.6.1] to
(Mn)n≥|V(F)|, we see that the injective homomorphism densities converge almost surely.
Recalling the uniform bound (3.6), t(F, Xn) will converge a.s. to the same limit as
tinj(F, Xn). Hence, it converges a.s.
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3.2 Concentration around Expectation Graphon

The following is the main theorem of this section. It establishes (3.7).

Theorem 3.7. LetW = (W(x, y))x,y∈[0,1] be a decorated graphon and X ∼ G(∞,W). Let F
be an unweighted graph with k nodes. Then

(1) E[tinj(F, Xn)] = t(F, EW), for all n ≥ k.

(2) With probability at least 1− 2 exp
(

nε2

2k2

)
,

|tn(F,W)− t(F, EW)| < ε. (3.11)

In particular, the homomorphism densities are highly concentrated and tn(F,W) →
t(F, EW) a.s.

Proof. (1) Without loss of generality, we may assume that V(F) = [k]. Let X ∼
G(k,W). As a consequence of exchangeability of Xn, it is sufficient in the compu-
tation of tinj to consider one injection from Inj(V(F), [n]) instead of the average of
all such. Hence, for the identity injection [k] ↪→ [n],

E[tinj(F, Xn)] = E

 ∏
{i,j}∈E(G)

Xij

 .

Let U1, . . . , Un be the latent parameters in the sampling of Xn. Then for W(Ui, Uj) :=
E[Xij|Ui, Uj]

E

 ∏
{i,j}∈E(G)

Xij

 = E

E

 ∏
{i,j}∈E(G)

Xij

∣∣∣∣∣∣U1, . . . , Un


= E

 ∏
{i,j}∈E(G)

(EW(Ui, Uj) + (W(Ui, Uj)−EW(Ui, Uj)))


We multiply out the last product, and use that (W(Ui, Uj)−EW(Ui, Uj)) are inde-
pendent and centered to see that all summands but the one involving only terms
from the expectation graphon vanish, i.e.

E

 ∏
{i,j}∈E(G)

Xij

 = E

 ∏
{i,j}∈E(G)

EW(Ui, Uj)


(2) Note that the bound in the theorem is trivial for ε2 ≤ ln 2 2k2

n = 4 ln 2 k2

2n . Hence, in
particular, ε ≤ 4 ln 2 k2

2n .

Furthermore, |t(F, Xn) − t(F, EW)| ≤ 1
n (

k
2) + |t(F, Xn) − E[t(F, Xn)]| ≤ k2

2n +
|t(F, Xn)−E[t(F, Xn)]| by the first part and (3.6).

17



3 Weighted Graph Limits

Hence

P[|t(F, Xn)− t(F, EW)| ≥ ε] ≤ P

[
|t(F, Xn)−E[t(F, Xn)]| ≥ ε +

1
n

(
k
2

)]
≤ P

[
|t(F, Xn)−E[t(F, Xn)]| ≥ ε

(
1− 1

4 ln 2

)]
.

Set ε′ = ε
(
1− 1

4 ln 2

)
.

Let (Xij)1≤i,j≤n ∼ G(n,W) with latent parameters U1, . . . , Un. Define a function
depending on n vectors where the i-th vector consists of all values relevant to the
i-th column of the array Xn, that is Ui, X1, . . . , Xn. In formulas,

f :
n

×
i=1

[0, 1]i+1 → [0, 1],

(a1, . . . , an) = ((u1, x11), (u2, x12, x22), . . . , (un, x1n, . . . , xnn))

7→ E[t(F, (Xij)1≤i,j≤n)|U1 = u1, . . . , Un = un, X11 = x11, . . . , Xnn = xnn].

We note that the random vectors (Ui, X1i, X2i, . . . , Xni) are mutually independent
for varying i. Claim:

| f ((a1, . . . , an)− f ((b1, . . . , bn))| ≤
n

∑
i=1

k
n

1ai 6=bi

If this claim is proved, then we have by MCDIARMID’s inequality [31, (1.2) Lemma],

P[|t(F, Xn)− t(F, EW)| ≥ ε′]

≤ 2 exp

− 2ε′2

n
(

k
n

)2

 ≤ 2 exp
(
−2ε′2n

k2

)
= 2 exp

(
−2nε′2

k2

)
,

Which implies the theorem by basic algebra.

Let us now prove the claim: It suffices to consider a, b differing in one coordinate,
say n. By (3.5), t(F, Xn) can be written as∫

g(x1, . . . , xk)d Unifk
[n]((xi)i∈[k])

for g(x1, . . . , xk) = ∏{i,k}∈E(G) Xxixk . We observe 0 ≤ g ≤ 1 (in the case of
graphons, one has g ∈ {0, 1}). It hence suffices to bound the measure where
the integrand g depends on ai by k

n . This is the case only if if x` = i at least for
one ` ∈ [k]. But the probability that this happens is upper bounded by,

1−
(

1− 1
n

)k

≤ k
n

,

by the BERNOULLI inequality.
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3.2 Concentration around Expectation Graphon

Corollary 3.8. tn(F, (Xij)1≤i,j≤n)
a.s.−−−→

n→∞
t(F, EW)

Proof. This follows by the BOREL-CANTELLI lemma [16, Theorem 2.3.1.] from Theorem
3.7.

We now come to the second limit from (3.8). In the additional material following this
section, we show that the rate O(log(n)−

1
2 ) cannot be improved.

Theorem 3.9. Let W be a decorated graphon and let n ∈ N. Then with probability at least
1− e−

n
2 log n

δ�(G(n,W), EW) ≤ 20√
log(n)

The proof strategy from [27, Lemma 10.26] using concentration inequalities remains
unchanged. We show where the higher generality of a decorated graphon is important
in the proof.

Proof. We only prove a bound on the expectation of the distance. Note that for n ≤ e400,
the bound is trivial as δ� ≤ 1 by definition. We prove that for n > e400,

E[δ�(G(n,W), EW)] ≤ 20√
log n

− 1
20

(3.12)

From this, the theorem can be proved by the concentration result [27, Theorem 10.3]
applied to nδ�(•, EW) that is also stated in the weighted case.

To prove the claim, first note that for any graphon, in particular EW , [27, Lemma 10.11]
says that

E[δ�(EW , Hn)] ≤
18√
log n

, (3.13)

for Hn ∼ G(n, (δEW(x,y))x,y∈[0,1]). Let also Gn ∼ G(n,W). Let Hn be sampled with
latent parameters (Ui)

n
i=1 and Gn with latent parameters (U′i )

n
i=1. We show in the addi-

tional material to this section, that we can choose any coupling of (Ui)
n
i=1 and (U′i )

n
i=1

getting an upper bound on the expected cut distance. We choose the identical coupling
(Ui)

n
i=1 = (U′i )

n
i=1 and identify nodes 1, . . . , n conditioning on (Ui)

n
i=1.

Consider the weighted graph Wn = Hn − Gn having the differences of edge weights of
Hn and Gn as weights. Denote its adjacency matrix by (hij)1≤i,j≤n. Recall that the cut
norm in graphs equals the normalised maximum cut value in the graph, cf. page 9. In
particular, for Hn[S, T] = 1

n2 ∑(i,j)∈S×T hij,

max
S,T⊆[n]

Hn[S, T] = ‖Gn −Wn‖�.
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3 Weighted Graph Limits

We can write each Hn[S, T] as the sum of |S||T|many random variables

1
n2 Xij −

1
n2 Yij

i ∈ S, j ∈ T, where Xij ∼ W(Ui, Uj) and Yij = EW(Ui, Uj). Hence Xij − Yij are inde-
pendent centered random variables on [−1, 1]. In the case of graphons, these random
variables only take two values given Ui and Uj, −W(Ui, Uj) and 1−W(Ui, Uj).

The claim then follows upon applying HOEFFDING’s inequality and a union bound
over all choices of S, T (one can assume with a multiplicative error of 4 that these are
disjoint), see the derivation of [27, (10.9)]. Putting together (3.12) and (3.13), we get

E[δ�(W , Gn)] ≤ E[δ�(W, Hn)] + E[δ�(Hn, Gn)] ≤
18√

log(n)
+

11√
n
<

20√
n
− 1

20

Corollary 3.10. LetW ,W ′ be decorated graphon. Let X ∼ G(∞,W), X′ ∼ G(∞,W ′). Then
δ�(Xn, X′m)

a.s.−−−−→
n,m→∞

δ�(EW , EW ′).

Proof. This follows by using a union bound and applying the BOREL-CANTELLI lemma
[16, Theorem 2.3.1.] twice.

Finally, we can give a sampling version of the Counting Lemma Counting Lemma,
[27, Lemma 10.23]. In the additional material following this section, we show that its
constant cannot be improved.

Theorem 3.11. LetW ,W ′ be decorated graphons and let F ∈ F be a finite graph with k nodes.
Then with probability 1− 4 exp

(
− 2nε2

k2

)
, we have

|tn(F,W)− tn(F,W ′)| ≤ |E(F)|δ�(EW , EW ′) + ε

Proof. By the triangle inequality

|tn(F,W)− tn(F,W ′)|
≤ |tn(F,W)− t(F, EW)|+ |t(F, EW)− t(F, EW ′)|+ |t(F, EW ′)− tn(F,W ′)|

By the Counting Lemma [27, Lemma 10.23], we can bound the second term

|t(F, EW)− t(F, EW ′)| ≤ |E(F)|δ�(EW , EW ′)

the first and third term can each be bounded by ε′ with probability at least
1− 2 exp

(
nε′2

2k2

)
. Hence, their sum is bounded by 2ε′. Now choosing ε = 2ε′, one arrives

at the claim.
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3.3 Additional Material

We showed that there is concentration of homomorphism densities and samples not
only in the case of unweighted graph limits but also in the more general case of dec-
orated graphons. The expectation graphon is the analogue of the graphon in the un-
weighted theory of graph limits in this more general theory.

3.3 Additional Material

The Counting Lemma is Tight The counting lemma is tight even for graphons as the
following example shows: Let W, W ′ be graphons such that t( , W) = 1 (i.e., W is the
all-one graphon) and t( , W ′) = 1− ε. Then d�(W, W ′) = ε. Let F = Em be the graph
of m mutually disjoint edges. Fix m. Then t(Em, W) = 1 as W is the all-one graphon.
As the homomorphism density is multiplicative with respect to connected components
[27, (5.28)],

t(Em, W) = t( , W)m = (1− ε)m.

Hence,
|t(Em, W)− t(Em, W ′)|
|E(F)|d�(W, W ′)

=
1− (1− ε)m

mε

ε→0−−→ 1

where one used for the limit DE L’HÔPITAL. A similar calculation shows that also for
densities of cycles C2m the limit is bounded from below by 1

2 .

The Sampling Lemma is rate-optimal The rate we prove in Theorem 3.9 is optimal
even in the case of graphons, as [25] show: The optimal bound on E[d�(G, W)], G ∼
G(k, W) for a χ-block model W and k nodes is

C
√

χ

k log(χ)
. (3.14)

The case of an arbitrary block structure corresponds to χ = k. Then (3.14) agrees with
the bound in Theorem 3.9.

The Cut Distance as a Coupling Distance First consider the equivalent definition
[22, (6.1) and Theorem 6.9] of the cut norm

δ�(W1, W2) := inf
φ,ψ
‖Wφ

1 −Wψ
2 ‖� (3.15)

where the infimum runs over all couplings (ψ1, ψ2) : Ω→ [0, 1]× [0, 1], ψ1, ψ2 ∼ Unif[0,1].
In particular, if G ∼ G(k,W) of H ∼ G(k,W ′), then there is a coupling (ψ1, ψ2) : Ω →
[0, 1]× [0, 1] of the latent variables such that

(U1, U′1), . . . , (Un, U′n)
D
= (ψ1, ψ2)
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3 Weighted Graph Limits

Gij
ind∼ W(Ui, Uj)

Hij
ind∼ W(U′i , U′j)

Taking the identical coupling (ψ1, ψ1), one has by (3.13)

E[δ�(G, H)] ≤ E[‖G− H‖�].

Under this coupling, sampling is as

U1, . . . , Un ∼ Unif[0,1]

Gij ∼ W(Ui, Uj)

Hij ∼ W(Ui, Uj)

Hence, when proving upper bounds on δ�(G, H), one may assume that G and H were
sampled with the same latent parameters (Ui)

k
i=1.
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4 Elements of Supervised Learning

We introduce classification problems and present applied approaches to supervised
learning with graph data. Supervised learning problems consist of tuple-valued ran-
dom variables (datum, label), where the datum is in a general space and the label
usually is a real number or is categorical. If the label is real, one speaks of regression
problems; in case of discrete labels one speaks of classification problems. In this thesis, we
exclusively study classification problems. To be more precise, with the label only taking
binary values.

In Section 4.1, we formally define (binary) classification problems and classifier consist-
ency followed by two examples of classifiers. We conclude the section by presenting
the kernel trick.

In Section 4.2, we translate features underlying popular graph kernels to the language
of random graphs and show that popular benchmark graph kernels use homomorph-
ism densities as features. In Section 4.3, we define WASSERSTEINstability results.

4.1 Binary Classification Problems

Before presenting two famous examples of classifiers, we collect basic definitions.

Classifiers We call a random variable (X, Y) : (Ω,A, P)→ (M, d)×{0, 1} a binary clas-
sification problem. Denote L(X|Y = 1), L(X|Y = 1) the alternatives of the classification
problem. A classifier for data of size n is a measurable function

f : (M× {0, 1})n ×M→ {0, 1}.

The classification error of a classifier f trained on data (X1, Y1), . . . , (Xn, Yn) for (X, Y) is

P[ f (((X1, Y1), . . . , (Xn, Yn)), X) 6= Y|((X1, Y1), . . . , (Xn, Yn))]

The optimisation problems in statistical learning theory is to minimise classification error
in the class of classifiers. This will be an optimisation problem conditional on data,
hence of finding a function

f ((x1, y1), . . . , (xn, yn), •) : M→ {0, 1} (4.1)

that minimises classification error.
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4 Elements of Supervised Learning

Bayes Classifier Denote η(x) := E[Y|X = x]. Then the Bayes classifier is

η̄(((x1, y1), . . . , (xn, yn)), x) = 1η(x)> 1
2
.

The BAYES classifier is ignorant of data, i.e. it does not depend on the data
((X1, Y1), . . . , (Xn, Yn)). Nevertheless, it has the lowest expected classification error
achievable by a classifier of length n.

Proposition 4.1 ([14, Thm. 2.1]). Fix any n ∈N. Let f be any classifier of length n. Then

P[η̄(X) 6= Y] ≤ P[ f (((X1, Y1), . . . , (Xn, Yn)), X) 6= Y]

Because of Proposition 4.1, one can define consistency of classification in terms of the
BAYES error.

Definition. Let ( fn)n∈N, fn : (M × {0, 1})n × M → {0, 1} be a sequence of classifiers of
increasing length. We say that ( fn) is (conditionally) consistent if

P[ f (((X1, Y1), . . . , (Xn, Yn)), X) 6= Y|X = x] n→∞−−−−→
L(X)-a.s.

P[η̄(X) 6= Y|X = x].

Lastly, a decision boundary of a classifier f given data ((X1, Y1), . . . , (Xn, Yn)) is the closed
and hence measurable set

∂{x ∈ M| f (((X1(ω), Y1(ω)), . . . , (Xn(ω), Yn(ω))), x) = 1}

Two important classifiers are the support vector machine (SVM) for which M needs
HILBERT structure (but we will see how one can apply it on a wider range of spaces)
and the nearest neighbor classifier that only assumes metric structure. The shape of the
decision boundaries is one main difference of SVM and nearest neighbor classifiers: For
SVM, they are linear, for nearest neighbors, they can be very irregular.

Nearest-Neighbor Classifiers The k-nearest neighbor classifier is

γk(((x1, y1), . . . , (xn, yn)), x) = 1∑k
i=1 yi− k

2

where (xi, yi) is sorted in a way such that d(x, xi) is increasing in i. It computes hence a
majority vote on the k nearest neighbors of a point x among the data points.

It is known that (γkn)n∈N is consistent for (kn)n∈N ∈ ω(log n) ∩ o(n) in the following
cases:

(1) If M = Rn [41] and any classification problem.

(2) If the LEBESGUE differentiation theorem holds in the metric measurable space
(M,B(M),L(X)) [13, Thm. 1].
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4.1 Binary Classification Problems

Support-Vector Machines Fix realisations (x1, y1), . . . , (xn, yn) of (X, Y). For ease of
exposition we assume that A = {xi|i ∈ [n], yi = 1} and B = {xi|i ∈ [n], yi = 0} are
linearly separable, i.e. there is a hyperplane 〈a, x〉 = b separating A and B. For the
inseparable case, see [7, Section 7.1.1].

Let hence 〈a, x〉 = b be a hyperplane separating A and B. By scaling b accordingly, it is
without loss to assume ‖a‖ = 1. By basic linear algebra,

|〈a, x〉 − b| = d({y ∈ F|〈a, y〉 = b}, x),

where d is the metric induced by the scalar product of M. Hence, |〈a, x〉 − b| gives the
distance of point x to the hyperplane {〈a, x〉 = b}. The support-vector classifier is

f ((x1, y1), . . . , (xn, yn), x) = 1〈a,x〉−b>0(x)

for a hyperplane maximising distance to the closest datum x ∈ A ∪ B. In particular,
the hyperplane {x|〈a, x〉 = b} is the decision boundary of this classifier. The minimal
distance to a data point is called the margin of the support-vector classifier f . The xi for
which |〈a, x〉 − b| = ε are called support vectors as they support the hyperplane defined
by a and b. This explains the name support vector machine.

The Kernel Trick The SVM hyperplane is hence a solution to the following problem

maximise
a,b,ε

ε, such that 〈a, xi〉 − b ≥ ε, ∀i ∈ [n], yi = 1

〈a, xi〉 − b ≤ −ε,∀i ∈ [n], yi = 0
〈a, a〉 = 1.

After substitution w = εa and minimisation of the reciprocal this can be written as a
linear-quadratic problem

minimise
w,b

1
2
〈w, w〉, such that 〈w, xi〉 − b ≥ 1, ∀i ∈ [n], yi = 1 (4.2)

〈w, xi〉 − b ≤ −1,∀i ∈ [n], yi = 0.

Proposition 4.2. There is an optimal solution of (4.2) w = ∑n
i=1 αixi.

Proof. Note that for the objective of (4.2), 1
2 〈w′, w′〉 ≤ 1

2 〈w, w〉 if w′ is the orthogonal
projection of w onto span((xi)

n
i=1). Furthermore, if w satisfies the constraints of the

optimisation problem, then so does its projection onto span((xi)
n
i=1). Hence there is

always an optimal solution in span((xi)
n
i=1).

Inserting w = ∑n
i=1 αixi, the optimisation problem reads

minimise
α,b

n

∑
i,j=1

αiαj〈xi, xj〉, such that
n

∑
j=1

αj〈xj, xi〉 − b ≥ 1, ∀i ∈ [n], yi = 1 (4.3)
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n

∑
j=1

αj〈xj, xi〉 − b ≤ −1,∀i ∈ [n], yi = 0. (4.4)

If we substitute into the support-vector classifier, this reads

f (x) = 1∑n
i=1 αi〈xi ,x〉−b (4.5)

We note that hence the classifier only depends on the GRAM matrix (Kij)1≤i,j≤n, Kij =
〈xi, xj〉 of the data x1, . . . , xn.

Remark 4.3. In some applications, instead of minimising 〈w, w〉 = ‖w‖2, one maximises
‖w‖1 = ∑n

i=1|wi|. This leads to much sparser vectors w, i.e. vectors with much less non-zero
entries [46]. This classifier is called 1-norm SVM or SVM with `1-penalty. We will use it in
our data application below.

Having observed that the classifier will only depend on scalar products of data points,
we can generalise the support-vector classifier to settings where we merely can embed
a space into a HILBERT space and compute scalar products efficiently.

Definition 4.4 (MERCER kernel). Let (X,A, µ) be a probability space. A symmetric function
k ∈ L2

µ⊗µ(X× X) is called MERCER kernel if∫
X×X

φ(x)k(x, y)ψ(y)dµ2(x, y) ≥ 0

for all ψ, φ ∈ L2(µ).

Theorem 4.5 (Mercer’s Theorem, [26, Theorem 3.a.1]). Let (X,A, µ) be a first countable
topological space that is endowed with a complete, locally finite measure µ with supp µ = X.
Let k : X2 → R be a MERCER kernel. Then there is a function φ : X → H for a HILBERT space
H such that k(x, y) = 〈φ(x), φ(y)〉H.

The vectors φ(xi) ∈ H are called feature vectors. If H is Euclidean, then coordinates of
φ(xi) are called xi’s features.

In the next section, we will see how the kernel trick has been used in the classification
of graphs.

4.2 Graph Kernels

In this section we translate applied approaches for graph classification into the lan-
guage of random graphs. In a weighted graph classification problem alternatives take
the form

k ∼ κ ∈ P(N) X ∼ G(k,W).
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In light of the theorems from Chapter 3, we restrict homomorphism densities t(F, W)
for a graphon W and W ′, as homomorphism densities tn(F,W) are concentrated around
the homomorphism densities of the expectation graphon, t(F, EW). We will analyse
discretisation errors in Chapter 5.

To shed light onto which extent popular benchmark classifiers use their graph data
and make more transparent which graphons popular graph kernels cannot distinguish,
let us define a general class of MERCER kernels on unweighted graphs. We note that
this consists of first defining a locally finite measure on the space of graphs and then to
define a kernel function. Consider the space (F , 2F , µ) of finite graphs with the discrete
topology and a locally-finite measure

µ =
∫

N
∑

F∈Fn

δFdν,

where ν ∈ P(N) has full support on the natural numbers and Fn is the set of all graphs
on exactly n nodes. The measure µ, for varying choices of ν is commonly employed in
graph-based classification. It remains to define a general MERCER kernel.

The Complete Graph Kernel Define the complete graph kernel using all induced ho-
momorphism densities respectively respectively all homomorphism densities as fea-
tures,

φ : G 7→ (tind(F, G))F∈F φ′ : G 7→ (t(F, G))F∈F ∈ L2
µ(F ), (4.6)

cf. [18]. These can distinguish all graphons that can be separated by sampling arrays,
as

G(∞, W) = G(∞, W ′) 2.4⇐⇒ t(F, G) = t(F, G′)∀F ∈ F
⇐⇒ 0‖t(F, G)− t(F, G′)‖L2

µ(F ) = ‖φ(W)− φ(W ′)‖L2
µ(F ),

where 2.4 stands for Proposition 2.4 and the second equality follows from the assump-
tion that ν has full support. For φ, one can even show more.

Proposition 4.6. Weak convergence is metrised by d = ‖φ(•)− φ(•)‖L2
µ

: F 2 → R.

This shows that the complete graph kernel can distinguish arbitrary decorated graphons
up to their expectation graphons.

Proof. Recall the definition of the induced homomorphism densities

tind(F, G) = G(k, G)[F]

and that simultaneous convergence of tind(F, G) for all F ∈ F characterises weak con-
vergence, Theorem 2.7. Hence, weak convergence can be metrised by

‖φ(G)− φ(G′)‖L1
µ(F ) = ‖(tind(F, G))F∈F − (tind(F, G′))F∈F‖L1

µ(F )
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=
∫

N
‖G(k, W)−G(k, W ′)‖1dν

=
∞

∑
i=1

ν[{i}] ∑
F∈Fi

|tind(F, W)− tind(F, W ′)|

where ‖ • ‖1 is the 1-norm for signed measures using that ν has full support. Ob-
serve that by definition of φ, It remains to shows that ‖φ(•)− φ(•)‖L1

µ(F ) and ‖φ(•)−
φ(•)‖L2

µ(F ) induce the same topology. Fix ε > 0. Let m ∈ N such that ν(N≥m) ≤ ε
4 .

Assume that Gn → G with respect to ‖φ(•)− φ(•)‖L1
µ

(The case for L2
µ is proved ana-

logously). Denoting by φ≤n(G) the feature vector that is zero for all graphs with more
than n nodes. Because of ∑F∈Fn

tind(F, G) = 1, we have

‖φ(Gn)− φ(G)‖L2
µ(F ) ≤ ‖φ≤n(Gn)− φ≤n(G)‖L2

µ(F ) + 2
ε

4
In the first summand only finitely many entries are nonzero. Hence, we can interpret
it as a finite-dimensional Lp-space. As all finite-dimensional Lp-spaces are equivalent,
there is a k such that ‖φ≤n(Gn) − φ≤n(G)‖L2

µ(F ) ≤
ε
2 , for any n ≥ k, concluding the

proof.

Hence, the complete graph kernel induces even the same topology as weak conver-
gence. Unfortunately, it is likely that it cannot be computed:

Proposition 4.7 ([18, Prop. 2]). The complete graph kernel is NP-hard to compute .

It is an open problem whether another graph kernel than the complete graph kernel
that metrises weak convergence. If this were the case, it would in particular imply
a polynomial-time algorithm for the graph isomorphism problem, which is neither
shown to be NP-complete nor to be in P.

State-of-the-Art Graph Kernels We show that three commonly used graph kernels
can be written as using homomorphism densities as features.

(1) The authors in [37] propose so-called graphlet counts as features. These can be
interpreted as using the restriction of the complete graph kernel φ′ to graphs with
at most k ∈N nodes, in [37] for k = 5. In this case, the feature vectors are

(tind(F, G))F∈F≤k .

(2) The random walk kernel [18, p. 135 center] restricts φ′ to n-paths Pn. The feature
vectors corresponding to the kernel are

φ : G 7→ (t(Pn, G))n∈N.
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(3) [33, Prop. 5 and discussion thereafter] restricts φ′ to trees,

φ : G 7→ (t(T, G))T∈{trees of height ≤ k}.

The WEISFEILER-LEHMAN graph kernel [38] leverages this idea for node-labelled
graphs by strong use of node labels.

Other approaches such as the cyclical pattern kernel [21] use induced densities tind of
graphs. The associated kernel is NP-hard to compute.

This means, that many graph kernels in the literature are associated to graph homo-
morphism densities. In Section 5, we will give bounds on the quality of homomorph-
ism densities as features using graphon theory. This gives some theoretical foundation
to the use of graph kernels and will be based on WASSERSTEIN sufficient conditions
studied next.

4.3 Wasserstein Sufficient Conditions

Without an efficient solution to the graph isomorphism problem, all efficiently comput-
able graph kernels will suffer from the inability to distinguish all graphs reliably. Thus,
one can only expect sufficient conditions from the use of graph kernels, i.e. differences
in feature vector distributions imply differences in data generating processes.

We formulate our stability estimates in terms of WASSERSTEIN distance. Let (M, d,A)
be a metric measurable space. The WASSERSTEIN-1 (or KANTOROVICH) distance between
probability measures ν, µ ∈ P(M) (cf. [45, (6.1)]) is

W1
d (µ, ν) := min

γ∈Π(µ,ν)

∫
d(x, y)dγ(x, y) = sup

f∈Lip1(F)

∫
f d(µ− ν), (4.7)

where Π(µ, ν) is the set of all probability measures γ having first resp. second mar-
ginals µ resp. ν and Lip1(M) is the set of 1-LIPSCHITZ functions F → R. The second
equality is known as KANTOROVICH duality [45, (6.3)].

For a feature map φ : M→ H, Stability estimates are inequalities of the form

W1
dH
(φ∗G(k, W), φ∗G(k, W ′)) ≤ cφδ�(W, W ′) + ok(1). (4.8)

Here, ∗ denotes the measure push-forward and cφ is a constant only depending on the
feature embedding φ. They show—up to an ok(1) additive error—Lipchitz variation of
feature vectors with the data generating processes. In Chapter 5, we will derive such
estimates.
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5 Stable Features for Graph Classification

We now study classification problems with a decorated graphon as underlying data-
generating process.

In Section 5.1 we contribute to this study by proving the stability of homomorphism
densities as features. In Section 5.3 we supply a similar stability estimate for graph
spectra. Along the way, we prove convergence of degree sequences and graph spectra
in Section 5.2. We give a data application in Section 5.4.

Stability estimates for graph classification are the best we can hope for: As we saw in
Chapter 4, computing the complete kernel of all homomorphism densities of a graph is
NP-hard. Therefore, one cannot expect bounds on the data generating process in terms
of the distribution of features. We show bounds in the other direction, so-called stability
estimates, as introduced in Section 4.3.

Data-Generating Process Throughout this section, we assume the following classi-
fication problem: LetW ,W ′ be decorated graphons. Let k ∈N and let

W1, . . . , Wn ∼ G(k,W), W ′1, . . . , W ′n ∼ G(k,W ′).

In addition, fix an unweighted graph F.

We assume an equal number of observations from each of the alternatives, which is
done for notational convenience only. We will point out where proofs need to be
changed to accommodate the general case whenever necessary.

5.1 Stability of Homomorphism Densities

The empirical distributions of homomorphism densities are defined as follows:

t :=
1
n

n

∑
i=1

δt(F,Wi) t′ :=
1
n

n

∑
i=1

δt(F,W ′i )
.

The following stability estimate for homomorphism densities is our first main contri-
bution.
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Theorem 5.1. With probability 1− 2e−cn
3
5 − 4e−

2
k2 n

3
5 ,

W1
|•|(t, t̄) ≤ |E(F)|δ�(EW , EW ′) + (1462

√
2 + 3)n−

1
5

Lemma 5.2 ([20, Theorem 1.1]). Let X ∼ µ, X ∈ [0, 1]. Let X1, . . . , Xn
iid∼ µ and µn =

1
n ∑n

i=1 δXn . Then for an absolute constant C

E[W1
|·|(µn, µ)] ≤ Cn−

1
5 .

In fact, a close inspection of the proof given in [20, Theorem 1.1] shows that the constant
can be taken to be C = 731

√
2.

Lemma 5.3 ([17, Theorem 2]). Let µ ∈ P(R) such that for X ∼ µ, ` = E[eγXα
] < ∞ for

some choice of γ and α. Then one has with probability at least 1− e−cnε2

W1
|•|(µn, µ) ≤ ε

for any ε ∈ [0, 1] and c only depending on `, γ and α.

Proof of Theorem 5.1. By the triangle inequality,

W1
|•|(t, t̄) ≤ W1

|•|(t,L(tk(F,W))) +W1
|•|(L(tk(F,W)), t̄)

+W1
|•|(L(tk(F,W ′)),L(tk(F,W))).

Combining Lemma 5.2 with Lemma 5.3 and choosing ε = n−
1
5 , the first two summands

are bounded by (1462
√

2 + 2)n−
1
5 with probability at least 1− 2e−cn

3
5 . For the last term

take any coupling of tk(F,W ′) and tk(F,W). Then, by Theorem 3.7, choosing ε = n−
1
5 ,

we get with probability at least 1− 4 exp(− 2n
3
5

k2 ) that

|tk(F,W)− tk(F,W ′)| ≤ n−
1
5 .

Using a union bound, the theorem follows.

As promised, we remark, that if one would like to allow for a different number of ob-
servations for the two alternatives, then the concentration bound in combining Lemma
5.2 with Lemma 5.3 has to be applied separately to the first two summands.
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5.2 Convergence of Graph Statistics

Convergence of spectra for graphons was established in [9] using a linear identity con-
necting homomorphism densities to spectra, Lemma 5.5 below. We extend this result in
two dimensions. On the one hand, we generalise convergence of spectra to the setting
of decorated graphons. On the other hand, we give a convergence result also for the
degree sequence. This is the content of the main result, Theorem 5.4. We collect the
necessary definitions for the formulation of Theorem 5.4 in the following.

Spectra Let W : [0, 1]2 → [0, 1] be a graphon. Define

TW : L2([0, 1])→ L2([0, 1]), TW f (x) =
∫
[0,1]

W(x, y) f (y)d Unif[0,1](y).

Let (V, c) be a block model. Then define the linear operators

Tc : RV ∼= L2(UnifV)→ L2(UnifV), f 7→
(

y 7→
∫

V
c(x, y) f (x)d UnifV(x)

)
.

The operator TW is a HILBERT-SCHMIDT integral operator and hence compact [3, Sec-
tion 8.15]. By the RIESZ-SCHAUDER spectral theorem for compact operators [3, The-
orem 9.9] the spectrum of W has at most one accumulation point at 0 and all nonzero
eigenvalues have finite multiplicity.

Hence, we can enumerate all eigenvalues of TW order-reservingly with two sequences:
Enumerate all non-negative eigenvalues of TW with multiplicity in a weakly decreasing
order to obtain (λW+

i )i∈N ⊆ R≥0. Similarly, let (λW−
i )i∈N ⊆ R≤0 denote the weakly in-

creasing sequence of all non-positive eigenvalues with multiplicity. A straightforward
adaptation of this definition applies to the operators TXn belonging to a random n-block
model Xn, yielding sequences (λXn+

i )i∈N ⊆ R≤0 and (λXn−
i )i∈N ⊆ R≥0.

Graph Transformations Transformations of adjacency matrices and their eigenvalues
have important implications for graph structure [40]. We define two such in the follow-
ing. Let G = (V, c) be a block model and W be a graphon. Denote δG the matrix with the
column sums of weights (the degrees) on the diagonal. Define the graph LAPLACIAN

as

lG := δG − c.

Furthermore, define the normalised graph LAPLACIAN as

nG(x, y) := E|V(G)| −
∫

d(x,x) 6=0
dG(x, x)−1c(x, y)d UnifV(x).,

where E|V(G)| is the identity matrix of size |V(G)|.
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5 Stable Features for Graph Classification

The degree distribution is of real-world graphs has been extensively studied [4]. It is
defined as

dG =
1

|V(G)| ∑
v∈V(G)

δ∫
V(G) c(x,y)d UnifV(G)(y) =

(∫
V(G)

c(•, y)d UnifV(G)(y)
)
∗

UnifV(G)

for a block model G and

DW =

(∫
[0,1]

W(•, y)d Unif[0,1](y)
)
∗

Unif[0,1] .

for a graphon W.

The main result of this subsection is the following.

Theorem 5.4. LetW be a decorated graphon and let Xn ∼ G(n,W). Then

(1) the eigenvalues of the operator TW converge to the eigenvalues of the expectation graphon,

λXn+
i

a.s.−−−→
n→∞

λEW+
i λXn−

i
a.s.−−−→

n→∞
λEW−

i .

(2) for G(∞,W)-a.e. ω ∈ Ω, the degree sequences converge weakly,

dXn(ω)
w−−−→

n→∞
DEW .

We note that the convergence result for degrees cannot be defined in a pointwise man-
ner, as the degree distribution may be purely continuous.

Lemma 5.5. For a block model G = (V, c) and a graphon W and Ck the cycle graph on k nodes,
one has that ∑∞

i=1(λ
W±
i )k exist and

∑
λ∈Λ(Tc)

λk = t(Ck, G)
∞

∑
i=1

(λW+
i )k +

∞

∑
i=1

(λW−
i )k = t(Ck, W). (5.1)

If Sk is the star graph on k + 1 nodes, then

t(Sk, G) =
1

nk+1 ∑
v∈V(G)

dG[{v}]k =
∫

xkddG(x)

The first statement appears in [9, (6.4)], the first equality of the second statement ap-
pears in [27, Example 5.10]. The last equality follows by definition of dG. In the ad-
ditional material to this section, we will show the following extension of the second
statement.

Lemma 5.6. Let W be a graphon. Then

t(Sk, W) =
∫

xkdDG(x)
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Proof of Theorem 5.4. By Corollary 3.8, we have a.s. convergence of any homomorph-
ism density tn(F,W) = t(F, Xn). As the set of finite graphs is countable, we get a.s.
convergence of

(tn(F,W))F∈F → (t(F, EW))F∈F . (5.2)

It suffices to show convergence of spectra for such ω ∈ Ω such that the convergence
(5.2) holds. Fix any such ω. Then,

∑
λ∈Λ(TXn )

λk(ω) = t(Ck, Xn)(ω)
n→∞−−−→ t(Ck, EW) =

∞

∑
i=1

(λW+
i )k +

∞

∑
i=1

(λW−
i )k

∫
xkddXn(x)(ω) = t(Sk, Xn)(ω)

n→∞−−−→ t(Sk, EW) =
∫

xkdDEW (x)

(5.3)

Hence, (5.3) can the be rewritten as

∞

∑
i=1

(λXn+
i )k(ω) +

∞

∑
i=1

(λXn−
i )k(ω)

n→∞−−−→
∞

∑
i=1

(λEW+
i )k +

∞

∑
i=1

(λEW−
i )k

∫
xkddXn(x)(ω)

n→∞−−−→
∫

xkdDEW (x)

which means we have convergence of all moments for the sequences (λXn±
i )i∈N respect-

ively the measures dXn(ω). We would like to conclude convergence of each element in
the sequence and weak convergence for the measure. We know that there are sub-
sequential limits a±i (ω) respectively d(ω) of the sequences as ((λi)

Xn±)i∈N ⊆ [−1, 1]
[27, (7.20)] lies in a compact set and (dXn)n∈N is tight. Indeed, dXn [{x||x| ≥ u}](ω) ≤
1
u2

∫
x2dXn(x)(ω) is a bounded sequence by the assumption of moment convergence.

To prove the theorem, it suffices to show that the subsequential limits are equal to the
limits in the statement. For the first sequence, this can be concluded from the corollary
to the monotone reordering theorem [27, Proposition A.21].

The measure DEW (ω) is compactly supported on [0, 1]. This implies that its moment
generating function has positive radius of convergence, which implies that it is uniquely
determined by its moment sequence [6, Theorem 30.1]. Hence also d(ω) = DEW , show-
ing the theorem.

5.3 Stability of Spectra

We turn to proving stability of spectra. By means of Lemma 5.5, we can connect eigen-
values of graphs to homomorphism densities of cycles. These in turn can be connected
to cut distance between the expectation graphons through Corollary 3.11.

We will view spectra as point measures: Denote by λG = 1
|V(G)| ∑λ∈Λ(Tc) δλ ∈ P(R) the

point measure with masses on the eigenvalues of Tc for a weighted graph G = (V, c).
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The empirical distribution of eigenvalue point measures then is

λ̄ =
1
n

n

∑
i=1

λWi , λ̄′ =
1
n

n

∑
i=1

λW ′i
. (5.4)

Denote in addition the homomorphism densities of length-v cycles by

t̄v :=
1
n

n

∑
i=1

δt(Cv,Wi), t̄v :=
1
n

n

∑
i=1

δt(Cv,W ′i )
. (5.5)

The following is the main result connecting the WASSERSTEIN distance of empirical
distributions to the distances of cycle homomorphism densities.

Theorem 5.7. Let λ̄, λ̄′ be as in (5.4) and t̄v, t̄′v be as in (5.5). Then

W1
W1
|•|
(λ̄′, λ̄) ≤ inf

v∈N
k−12(4e)v

v

∑
i=1
W1
|•|(t̄i, t̄′i) +

3
πv

Corollary 5.8 (Stability of Spectra). Let λ̄, λ̄′ be as in (5.4). Then

W1
W1
|•|
(λ̄, λ̄′) ≤ inf

v∈N
δ�(EW , EW ′)2(4e)vv2k−1 +

(
2(4e)vk−1(1462

√
2 + 3)n−

1
5 +

3
πv

)
Lemma 5.9 (Corollary of [1, p. 200]). Let f be a 1-LIPSCHITZ function on [−1, 1]. Then
there is a polynomial p of degree v such that ‖ f − p‖∞ ≤ 3

πn .

Lemma 5.10 ([36, Lemma 4.1]). Let ∑v
i=0 aixv be a polynomial on [−1, 1] bounded by M.

Then
ai ≤ (4e)d M

Proof of Theorem 5.7. Consider any coupling (λ, λ′) of λ̄ and λ̄′. Let (Wi)j` be the adja-
cency matrix of graph Wi. Note that supp λ, supp λ′ ⊆ [−1, 1], as 0 ≤ (Wi)j` ≤ 1 for
any i ∈ [n], j, ` ∈ [k] and hence

‖TWi f ‖L2([0,1]) ≤ ‖Wi‖2
∞‖ f ‖L2([0,1]) ≤ ‖ f ‖L2([0,1])

where ‖Wi‖∞ is the maximum norm of the matrix ((Wi)j`)j,l∈[k]. One has by the defini-
tion of the WASSERSTEIN distanceW1

W1
|•|

and KANTOROVICH duality

W1
W1
|•|
(λ̄′, λ̄) ≤ E

[
W1
|•|(λ, λ′)

]
= E

 sup
f : [−1,1]→R

Lip( f )≤1

∫
f (x)d(λ− λ′)

 (5.6)

Fix any ω ∈ Ω. By Lemma 5.9 one can approximate Lipschitz functions by polynomials
of bounded degree,

sup
f : [−1,1]→R

Lip( f )≤1

∫
f (x)d(λ− λ′)(ω) ≤ sup

deg( f )≤v
| f |≤2

∫
f (x)d(λ− λ′)(ω) +

3
πv

. (5.7)
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Here, | f | ≤ 2 can be assumed as f is defined on [−1, 1] and its 1-LIPSCHITZ continuity
and because the integral in (5.7) is invariant with respect to the addition of constant
functions.

Hence, by Lemma 5.10 and the triangle inequality

sup
deg( f )≤v
| f |≤2

∫
f (x)d(λ− λ′)(ω) ≤

v

∑
i=1

2(4e)v
∣∣∣∣∫ xid(λ− λ′)

∣∣∣∣ (ω)

=
v

∑
i=1

2(4e)vk−1

∣∣∣∣∣∑w∈λ

wi − ∑
w′∈λ′

wi

∣∣∣∣∣ (ω)

Inserting this into (5.7) and taking expectations, one gets

W1
W1
|•|
(λ̄, λ̄′) ≤ 3

πv
+

v

∑
i=1

2(4e)vk−1E

[∣∣∣∣∣∑w∈λ

wi − ∑
w′∈λ′

wi

∣∣∣∣∣
]

for any coupling (λ, λ′) of λ̄ and λ̄′. Now consider a coupling (λ, λ′) of λ̄ and λ̄′ such
that t̄, t̄′ (which are functions of λ, λ′ by (5.1)) are optimally coupled. Then by the
definition of λ̄, λ̄′, t̄ and t̄′, and Lemma 5.5 one gets that

W1
W1
|•|
(t̄i, t̄′i) = E

[∣∣∣∣∣ ∑
w∈ λ

wi − ∑
w∈λ̄′

w′i
∣∣∣∣∣
]

.

Hence, by (5.6), one has for any v ∈N

W1
W1
|•|
(λ̄′, λ̄) ≤ 2(4e)vk−1

v

∑
i=1
W1
|•|(t̄i, t̄′i) +

3
πv

, (5.8)

proving the claim.

Remark 5.11. A statement with slightly worse constants holds for the degree distribution. For
the proof, one has to replace cycles by stars in the definition of t̄i and t̄′i and use the second part
of Lemma 5.5.

Proof of Corollary 5.8.

W1
W1
|•|
(λ̄, λ̄′) ≤ inf

v∈N
2(4e)vk−1

v

∑
i=1
W1
|•|(t̄i, t̄′i) +

3
πv

≤ inf
v∈N

2(4e)vk−1
v

∑
i=1

(
iδ�(EW , EW ′) + (1462

√
2 + 3)n−

1
5

)
+

3
πv

≤ inf
v∈N

δ�(EW , EW ′)2(4e)vv2k−1 +

(
2(4e)vk−1(1462

√
2 + 3)n−

1
5 +

3
πv

)
where the first bound is from Theorem 5.7 and the second bound is from Theorem 5.1.
The third is basic algebra.
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5 Stable Features for Graph Classification

The infimum in Theorem 5.7 signifies a payoff: High powers polynomials correspond-
ing to large cycles are volatile (multiplicative error, variance), but low power polyno-
mials corresponding to small cycles are not very expressive (additive error, bias).

Other stability estimates can be found in the literature on topological data analysis
[12] bounding variations of persistence landscapes by variation of underlying data-
generating processes.

5.4 Application: Neuroscience

The Dataset and Classification Problem We are given a classification problem on
weighted graphs based on diffusion tensor images (DTI) of 56 individuals [35]. There
are three different groups of subjects (labels): 17 human controls (HC), 18 persons af-
fected by autoimmune disease Lupus Erythematodes (SLE1) and 18 SLE patients that in
addition have been reported to show neuropsychiatric symptoms.

We consider the classification problems HC versus NPSLE and HC versus SLE as the
authors of [24] did, working with the same dataset.

For each subject, there are six different weighted graphs, each consisting of 1164 nodes.
Nodes are anatomically localised and correspond to the regions of the finest resolution
of the Talairach brain atlas [42]. Four of the six weighted graphs are scalar functions of
the DTI tensor field integrated along so-called fibers, i.e. curves connecting the regions
that nodes correspond to. We present the data pipeline in Figure 5.1 and give the defin-
itions of the four values in the additional material following this section. The other
two weighted graphs give the total length and the number of all fibers connecting two
regions. These values in particular measure tissue integrity with respect to whether
tractography (fiber tracing) algorithms [5] can detect fibers in the images.

Our Approach First, we reduce dimensions making use of the used brain atlas: We
average over regions to get a graph on a coarser level of the TALAIRACH brain atlas
hierarchy [42] on 344 nodes. On these graphs, we compute the eigenvalues of the adja-
cency matrix, the graph LAPLACIAN, the normalised graph LAPLACIAN and the degree
matrix for all six values, effectively treating the connectomes as exchangeable random
graphs. We restrict to the ten largest and ten smallest eigenvalues of the graph LAPLA-
CIAN of the given graphs and concatenate the features of different measurements to get
the final features. We selected the features of the graph LAPLACIAN as it showed dif-
ferent distributions for the three groups for all values, cf. Figure 5.2. We chose smallest
and largest eigenvalues as these showed in general stronger variations than intermedi-
ate eigenvalues.

1Systemic Lupus Erythematodes is a chronic inflammatory disease affecting multiple human organs which
occurs in 0.01 to 0.1% of the general population [39]. 20 to 70% of those affected by SLE have been
reported to show neuropsychiatric symptoms [11].
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5.4 Application: Neuroscience

DTI image
M ⊆ R3 → R3×3

standardised image
B ⊆ R3 → R3×3

fibers
γ̃k

ij : [0, 1]→ M ⊆ R3

k ∈ [nij]

regions
B =

⋃n
i=1 Ai

fibers
γk

ij : [0, 1]→ B, k ∈ [nij]

γk
ij(0) ∈ Ai , γk

ij(1) ∈ Aj

weighted connectome
(G, c),c({u, v}) =

= 1
nij

∑k∈[nij ]

∫
γk

uv
F(z)dz

standard-
isation segmen-

tation

tracto-
graphy

avera-
ging

normal-
isation

averaging

Figure 5.1: Preprocessing pipeline for weighted structural connectomes. A brain can be
seen as a tensor field B : M ⊆ R3 → R3×3 of flows. The domain of this tensor
field is partitioned into regions A1, . . . , An, called brain regions. Fibers are
parametrized curves from one region to another. Each scalar function F :
R3 → R converts a brain into a weighted graph on n nodes, where the
weight between regions i and j is F averaged or integrated over all fibers
between these regions.

HC vs. NPSLE HC vs. SLE

[24] 76% 73%

Eigenvalues 78.3% 67.5%

Table 5.1: Accuracies for neuroscience classification tasks compared to [24]. We use con-
catenation of eigenvalues for the different weighted graphs given and get
competitive result comparing to the anatomically localised approach in [24].

In the classification problem HC versus NPSLE we use the 40 fiber tracing-based val-
ues “length” (len) and “number of fibers” (num), as we expected that neuropsychiatric
symptoms are related to tractography-related features. In the classification problem HC
versus SLE we use all 120 features from the six different weighted graphs.

Results We use these features in a support-vector machine with `1-penalty (cf. Re-
mark 4.3). We summarise the leave-one-out cross validation accuracies in Table 5.1. A
permutation test [32] shows that these results are significant (at 10%).

Hence, an easy classifier can get competetive results on this classification task. This can
be interpreted as a characterisation of structural connectomes affected by Lupus Eryth-
ematodes: The average weight of cycles in the expectation graphon of human controls
and patients having the disease is altered. As the spectra contain information on cycles
of all lengths, these features use both local information, corresponding to very short
cycles, and global information, corresponding to very long cycles.

39



5 Stable Features for Graph Classification

−4 −2 0 2 4

0

0.1

0.2

0.3

0.4

eigenvalues normalised to unit std.

de
ns

it
y

length

HC
NPSLE
SLE

−4 −2 0 2 4

0

0.1

0.2

0.3

0.4

eigenvalues normalised to unit std.

de
ns

it
y

AD

HC
NPSLE
SLE

−4 −2 0 2 4

0

0.1

0.2

0.3

0.4

eigenvalues normalised to unit std.

de
ns

it
y

FA

HC
NPSLE
SLE

−4 −2 0 2 4

0

0.1

0.2

0.3

0.4

eigenvalues normalised to unit std.

de
ns

it
y

number

HC
NPSLE
SLE

−4 −2 0 2 4

0

0.1

0.2

0.3

0.4

eigenvalues normalised to unit std.

de
ns

it
y

RD

HC
NPSLE
SLE

−4 −2 0 2 4

0

0.1

0.2

0.3

0.4

0.5

eigenvalues normalised to unit std.

de
ns

it
y

MD

HC
NPSLE
SLE

Figure 5.2: Density of first and last ten eigenvalues (normalised to zero mean unit
standard deviation) of the graph Laplacian for all six values.

5.5 Additional Material

Omitted Proofs As promised, we prove the two remaining statements.

Proof of Lemma 5.6. Note that by (2.3),

t(Sk, W) =
∫
[0,1]k+1

W(x1, x2)W(x1, x3) · · ·W(x1, xk+1)d Unifk+1
[0,1]

=
∫
[0,1]

(∫
[0,1]

W(x, y)d Unif[0,1](y)
)k

d Unif[0,1](x)

=
∫
[0,1]

xkd
(∫

[0,1]
W(•, y)d Unif[0,1](y)

)
∗

Unif[0,1]

=
∫
[0,1]

xkdDW(x).

Explanation of values in Neuroscience Data In a diffusion model of tensor ima-
ging[5], the movement of a water molecule is modelled as a BROWNIANmotion on a
Riemannian manifold with metric d. View the metric as a matrix. Let λ1 ≥ λ2 ≥ λ3
be the eigenvalues of the metric d. Then the radial diffusivity (RD) is defined as λ2+λ3

2 ,
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5.5 Additional Material

the axial diffusivity (AD) as λ1 and the mean diffusivity (MD) by λ1+λ2+λ3
3 . Finally,

fractional anisotropy (FA) is defined as√
∑3

i=1(λi −MD)2

2 ∑3
i=1 λ2

i

.
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6 Conclusion and Open Problems

Forming a sound statistical foundation for random graphs is important for the empir-
ical study of complex networks. In an effort to contribute to this endeavour, we studied
the classification problem for weighted graphs.

The approach taken was to introduce decorated graphons and generalise known results
from the graphon literature to this case. In particular, we provided stability estimates
for features in a general weighted random graph model. We hope that the progress
made in this thesis will set the groundwork for a better understanding of random net-
works.

Nevertheless, there remain open problems that we would like to mention:

We do not provide stability estimates for the graph LAPLACIAN. As these features
performed well in an applied task, it is worthwhile to characterise their convergence.
In particular we believe it is an interesting problem whether the spectrum of the graph
LAPLACIAN can be related to homomorphism densities of unweighted graphs by a
linear equality.

As we mentioned in Chapter 3, defining a generalisation of the cut metric to decor-
ated graphons is a problem yet to be solved. The challenge is metrising the space of
decorated graphons in a way that allows fully characterising the weak convergence of
weighted exchangeable random graphs.

The convergence tn(F,W)→ t(F, EW) can be interpreted as an exchangeable instance
of a strong law of large numbers. To better understand in how far variants of homo-
morphism densities scaled in different ways are able to capture moments other than the
expectation is a worthwhile task. Ultimately, one would hope for a central limit type
result.

Concerning our discussion of the applied literature in Chapter 4, our observation that
most features used in classification of graph data are homomorphism densities does not
include all benchmarks: The shortest-path histogram kernel [10] uses edge lengths in
the metric closure of graphs as features. A convergence result for edge length distribu-
tions in a decorated graphon setting would not only constitute an interesting theoretical
result, but also lead to a better understanding of such features.
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Springer-Verlag, 2012.
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Nomenclature

λ̄,λ̄′ Empirical distribution, spectra, 36
t̄v, t̄′v Empirical distributions, cycle homo-

morphism densities, 36
Bernp Bernoulli Distribution, 3
δ� Cut Metric, 9
δx DIRAC Mass, 3
EW Expectation Graphon, 12
Eν Expectation of measure, 3

K2, 3
G(∞, W) Array Sampled from Graphon, 7
G(∞,W) Array Sampled from Decorated

Graphon, 11
G(k, X) k-sampling, exchangeable array, 5
G(k,W) k-Sampling, Decorated Graphon,

11
G(k, W) k-Sampling Graphon, 7
⊥⊥ Independence of random variables,

3
K3, 3

Λ(F) Spectrum of linear operator F, 3
F set of finite unweighted graphs, 3
L(X) Law of random variable X, 3
P(M) Set of probability measures, 3
W1

d WASSERSTEIN distance, 29
WG(x, y) Weighted graph as graphon, 13
ω LANDAU small-omega, 3
Inj(V(F), V(G)) Set of injections V(F) ↪→

V(G), 14
Lip1(F) Set of Lipschitz functions with con-

stant 1, 29
supp Support of a measure, 36
φ feature map, 26
Π(µ, ν) Set of couplings, 29

πn Projection of graphs to n − 1 first
rows and columns, 5

τx Translation by x, 4
4 symmetric difference, 4
UnifV Uniform Distribution, 3

K1, 3
dG Degree Distribution, block model,

34
DW Degree Distribution, graphon, 34
En identity matrix, 33
lG graph Laplacian, 33
nG normalised graph Laplacian, 33
O LANDAU big-o, 3
o LANDAU small-o, 3
S(A) Symmetric group acting on A ⊆ [n],

15
t homomorphism density, 7
t(F, Xn) Block Model Homomorphism Dens-

ity, 14
t, t′ empirical homomorphism densities,

31
tind Induced homomorphism density, 7
tinj Injective homomorphism density, 14
Tc Block model as linear operator, 33
tn(F,W) Finite homomorphism density, 14
TW Graphon as linear operator, 33
Wφ measure-preservingly transformed

graphon, 7
Xk Initial k-subarray, 5

∗ Measure Pushforward, 3
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