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Nomenclature

< total order on K, T or R

1 all-one vector

αi phantom ballot

F range gsecond-best

〈•, •〉 Euclidean scalar product

K choice set

M message set

t type vector

med Median

Ω Landau symbol: Not faster asymp-
totically

t average type

T type set containing preferences

TA preferences restricted to A ⊆ K

τK(t) top alternative on K of type t

k, k upper resp. lower bound of K

f social choice function

f ↓ signal to quantisation level

f ↑ quantisation level to representative
point

g mechanismMn → K

k = |M |, number of signals

mi message of agent i

n number of agents

O Landau symbol: at least as fast

p projection T � TA
si strategy of agent i T →M

ti player i’s type



1 Introduction

This thesis considers a model of voting where agents are restricted in their ability to
communicate to the principal. Observing their private type, the agents choose one of
a (small) finite number of signals that they send to the principal. Such communication
restrictions are common in democratic electoral systems as well as in allocation problems
on the internet. Common to all is that the type space of agents (be it voters or internet
servers) is much more complex than what they can or want to communicate to a mecha-
nism. Communication restrictions arise for different reasons.
First, it is costly to communicate the exact position in a large type space. In computing
environments, economic decisions involve low-cost computational resources. The commu-
nication of even a fixed-length integer (this is a number in 0, 1, 2, . . . , 232 − 1) might be
too costly. A small number of different signals that agents communicate might hence be
a desideratum and sometimes even a constraint for mechanism design for the internet.
Furthermore, agents might be hesitant to reveal their type. For example, in income and
wealth questionnaires, depending on culture, direct questions for the income of an agent
are omitted as these would not be answered—instead, the agents shall announce one of a
certain number of intervals in which their income lies.
As a third example, there might be intellectual limits to the agents’ perception. If there
are 10,000 options, an agent might be overwhelmed by the number of alternatives and
in fact only evaluate a few of the alternatives, e.g. the first and last few of them. In
addition, informed debate of alternatives could often result in too high opportunity costs.
Therefore, studying a model with restricted communication might yield valuable insights
into real-world voting mechanisms.

Nevertheless, much of the mechanism design literature is based on the revelation principle.
The revelation principle says that any mechanism can be implemented by the agents
revealing their true type. The argument is that for any mechanism with a different
communication structure, a “black box” could be introduced that takes the types of the
agents and “plays” for them in an optimal way—assuming agents announce their type
truthfully. For the reasons given above, the communication of one’s type to such a black
box is not feasible in many environments. Hence, one cannot consider direct revelation
mechanisms in a realistic model of mechanism design with restricted communication.

A body of literature studies mechanism design with limited communication and with
monetary transfers. In many situations, however, monetary transfers are not feasible:
First, transaction costs might be too high to justify a monetary transfer. This might
be the case if the economic decision to be taken is one of low stakes, e.g. if the agents
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decide on low-value computing resources. In other situations, monetary transactions are
not used for ethical reasons, as in democratic elections. The present study contributes to
the literature on mechanism design without monetary transfers.

Furthermore, the literature on voting can be divided into two branches. On the one
hand, Bayesian Incentive Compatible (BIC) mechanism design studies implementability
in Bayesian equilibria. As voting studies implementation in simultaneous-move games,
the Bayesian approach assumes that the agents have sufficient prior information about the
type distribution of the other agents. On the other hand, Dominant Incentive Compatible
(DIC) mechanism design studies implementability in dominant strategies. The latter is
more robust to different beliefs the agents might have about the other agent’s types. In
fact, a mechanism is DIC if and only if it is BIC with respect to any system of beliefs the
agents might have. We ask whether incentive compatible, in particular DIC, mechanisms
in a model with restricted communication can be complex enough to yield high welfare.
An easy measure of complexity is the number of values a voting mechanism attains.

Separate from the above, this thesis also seeks to understand from a perspective of com-
munication restrictions in which sense representation in democratic systems might be
implied by incentive compatibility. Representation by a party means that each agent
decides which of a finite set of parties should represent her. Votes are then taken by the
parties. We ask whether such a representation has incentive-compatible alternatives.
In the history of election systems, it has been observed that different margins of victory
lead to different policy choices by the winning party. This study of mandates hints in a
direction that weak commitment might allow for more cmplex mechanisms. We will not
study situations of weaker commitment, but leave this for further work.

The present thesis is to the best of our knowledge the first contribution to DIC mechanism
design with restricted communication and without monetary transfers. Our contributions
are threefold:

(a) In a one-dimensional voting model with quadratic utilities, we give a strong neces-
sary condition that first-best mechanisms under restricted communication have to
fulfil. We provide upper and lower bounds on the rate of convergence of average
welfare in the size of the message set and show that the range of any first-best
mechanism grows with the size of the society.

(b) For the single-peaked preference domain, we show that anonymous, dominant strat-
egy implementable, non-wasteful (a new definition we give) mechanisms are exactly
embedded generalised median voting rules. These have a small range. We show
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that the difference in average ex-ante welfare of DIC mechanisms with and with-
out restricted communication is Ω(k−2) for the case of two players. Furthermore,
we strengthen a characterisation of anonymous strategy-proof voting schemes by
Weymark 2011.

(c) We define a continuous extension of the voting model on linear tax schedules by
Romer et al. 1975. We identify two properties (Properties A and B) that preference
domains need to satisfy such that the characterisation we presented for single-peaked
preferences also holds. We show that any regular, single-crossing, tops-connected
(RST) preference domain, among them the quadratic as well as the linear preference
domain, satisfies property A. We present recent evidence from Achuthankutty and
Roy 2018 why property B might also be satisfied by an RST preference domain.

Literature Review

This thesis compares voting systems using ex-ante (cardinal) welfare. The idea to compare
voting systems using ex-ante (cardinal) welfare goes back to Rae 1969. On the one hand,
there are papers covering the case of a small number of agents or alternatives: For two
alternatives and an arbitrary number of agents, Schmitz and Tröger 2012 show for a
DIC setting and Azrieli and Kim 2014 for a BIC setting that interim Pareto efficient
mechanisms are exactly qualified majority rules. For three alternatives and two agents,
Börgers and Postl 2009 characterise BIC mechanisms in a setting where it is common
knowledge that the most preferred alternative of one agent is the least preferred alternative
of the other agent. On the other hand, for an arbitrary number of agents Gershkov et
al. 2018 characterise in a DIC setting with a regular maximally single-crossing domain
anonymous mechanisms that maximise ex-ante cardinal utility. We follow this literature
in that we maximise ex-ante utility given DIC constraints.

Another branch of literature connected to ours is the approximation of mechanisms by
simple mechanisms: For the case of matching, McAfee 2002 and Hoppe et al. 2011 (the
second for the case with private information) compared the performance of three matching
mechanisms: completely random matching, assortative matching (optimal matching given
complete information revelation) and “coarse” matching, optimal matching given agents
only send one of two possible messages. The papers show the coarse scheme yields at least
as high welfare as the average of assortative matching’s and random matching’s ex-ante
welfare. In a BIC public goods setting, Ledyard and Palfrey 2002 study the performance
of mechanisms for public goods provision. They compare the optimal interim efficient
mechanism to a mechanism with two messages: Agents send either one of two possible

3



messages (for or against) to the principal. If the number of positive votes surpasses a
threshold, the public good is produced and the costs are shared equally. They show
that for an optimal choice of the threshold the simple mechanism’s welfare converges
to the welfare of the interim efficient mechanism. A similar result is the discussion at
the beginning of Gershkov et al. 2017, Section 5, p. 21. The authors show that in their
DIC model, a mechanism where agents send one of two possible alternatives gives the same
welfare as the second-best mechanism in the limit of large societies. For the allocation of
a divisible good, Wilson 1989 studies the approximation of efficient screening mechanisms
in a DIC setting when agents are only allowed to send one of a finite number k of signals
(“priority classes”). He shows that welfare converges to the optimal welfare with a welfare
loss O(k−2). Our work differs from this literature in that it does not consider a fixed class
of mechanisms with a certain structure that approximate an optimal one, but considers a
constrained optimal mechanism subject to a bound on the number of different messages
an agent can send.

Our work is also connected to literature on the optimal design of signal spaces for agents:
Alonso and Matouschek 2008 studies the design of the message space of one agent to a
principal in the case when the utilities of the agent and the principal are misaligned. Rosar
2015 shows in a BIC setting that with an appropriately designed message space, the mean
mechanism always welfare-dominates the median mechanism, exaggerated signals being
allowed, but only to the extent that the message space allows. These papers consider
binary resp. convex uncountable message spaces for the agents. We, however, consider
message spaces of arbitrary finite cardinality.

There is an extensive literature on mechanism design under limited communication that al-
lows formonetary transfers: Blumrosen and Feldman 2006 studies a DIC setting with sing-
le-crossing preferences, monetary transfers and a welfare function that is linear in each
agent’s one-dimensional type. A rate of convergence of welfare under communication
constraints by O(k−2), where k is the number of different signals an agent can send, is
established and optimal mechanisms are characterised. It should be stressed that these
results rely on the assumption of linear welfare functions. Blumrosen, Nisan, et al. 2007
study auction design both from a welfare maximisation perspective (with a DIC setting)
as well as from a revenue maximisation perspective (with a BIC setting). They show that
the strategies of agents will be partitional in the sense that agents report an interval their
type lies in. Furthermore, they show that revenue converges exponentially and welfare
as O(k−2). They characterise optimal mechanisms in the special case of two players and
several alternatives or two alternatives and several players. The paper Bergemann, Shen,
Xu, and E. M. Yeh 2011 studies a one-dimensional screening model and gives necessary
conditions for optimal revenue maximising mechanisms in a BIC mechanism as well as
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welfare maximising mechanisms disregarding incentive constraints. They show, as afore-
mentioned papers, a welfare convergence rate of O(k−2). The follow-up paper Bergemann,
Shen, Xu, and E. Yeh 2012 restricts itself to the case of welfare maximisation, but con-
siders n-dimensional types or, mathematically equivalent, n agents with one-dimensional
types (but see the remark on 12). They prove rates of convergence results depending on
dimension and show the suboptimality of treating each dimension of types separately in
the agents’ strategies. Madarász and Prat 2010 studies a one-dimensional screening prob-
lem, but is concerned with the post-correction of the effects of an approximate type space.
Our work differs from this literature in that we do not allow for monetary transfers.

The paper of McMurray 2017 studies in a game-theoretic Bayes-Nash setting “man-
dates” for candidates in elections: Assuming candidates that maximise social welfare,
agents can only cast a vote for one of the candidates. In a one-dimensional voting model,
the elected candidate only chooses her ideological position after the election, and may
base her decision on the election’s outcome. Interpreting the choice of the ideological po-
sition of the elected candidate as a mechanism design problem, the paper gives an insight
into mechanism design with limited communication: In particular, the number of votes a
candidate receives can change the outcome in this BIC model. We study DIC constraints
and our conclusions differ from the ones in McMurray 2017.

In the electrical engineering and statistics literature, communication under constraints is
an important topic of study. There are two branches of literature particularly connected
to the present study: quantisation and distributed inference.
Quantisation is the theory of the optimal approximation of a real-valued (or more general)
random variable (the “signal”) by a finite number of discrete levels or subject to a bound
on the entropy of the discretised random variable. In our application, the further is more
relevant. Lloyd 1982 and Max 1960 independently discovered a strong necessary condition
for the optimal quantisation of a square-integrable random variable, whose convergence
guarantee is the best known for general distributions.
Distributed Inference is the problem of estimating a quantity from observations by differ-
ent sensors by a principal (the “fusion center”). The sensors send quantised messages to
the principal. The principal uses a mechanism (the “fusion rule”) to determine a quan-
tity from the different messages. By treating the sensors as agents that act strategically,
this is a mechanism design problem. Such cases might occur if the sensors are in public.
The problem has been studied with respect to possible attacks by persons-in-the-middle,
Kailkhura et al. 2015, and with algorithms to compute optimal quantisations, Venkitasub-
ramaniam et al. 2007. From an economic perspective treating sensors as agents suggests
itself and yields mechanism design problems in the special case of voting with restricted
communication.
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The plan of the rest of the thesis is as follows: In section 2, we present our voting model
with restricted communication. We characterise in section 3 first-best mechanisms in the
case of quadratic preferences and characterise convergence of average welfare. In section 4
we characterise the class of second-best mechanisms in a voting with restricted commu-
nication for the preference domain of single-peaked preferences. We give a formulation of
our characterisation theorem based on two abstract properties and show that the domain
restriction of RST domains implies one of them in section 5 and give a conclusion in
section 6.

2 Model

Agents and Utilities We consider n agents i = 1, 2, . . . , n that have to make a choice
on a continuous value of common interest. Call the set of outcomes K and the set of
types T which we both assume to be totally ordered (e.g. T = R and K a subset of R).
To simplify notation, we use for both total orders the symbol <. The set of outcomes is
assumed to contain a lower bound k and an upper bound k. The type set T consists of
preference orders, i.e. reflexive, transitive, asymmetric relations over alternatives in K.
Agent i = 1, 2, . . . , n has a type ti ∈ T privately known to her. By τK (t) ∈ K we denote
the most preferred alternative of an agent with type t ∈ T . We will write x1 �t x2 instead
of x1tx2 for clarity of notation. In examples, we will use utiltity functions

ux : T → R, t 7→ ux(t),

for alternatives x ∈ K. These induce quasi-orders, i.e. there are types t such that t is
indifferent when given the choice between x1, x2 ∈ K. We stress that there might be even
several such pairs. As our model requires strict preferences, in cases where we work with
utility functions, we will need to define a total order that refines this quasi-order. We call
such a definition a resolution of indifferences. We will specify a resolution of indifferences
where needed.

In the different sections, we study different domains of preferences T . In section 3 and
section 5, we consider quadratic preferences: T = K = [0, 1] with utility functions
uxquad.(t) = −(t− x)2 = −‖t− x‖2

2. As an example, consider Figure 1. The preferences of
the agents are read from top to bottom, hence

x1 �t x2 �t x3

x2 �t
′
x1 �t

′
x3
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T
R

t t′ t′′

ux1 ux2 ux3

Figure 1: Quadratic preference domain

x2 ∼t
′′
x3 �t

′′
x1,

where agent t’s preference requires a resolution of indifference that is formally defined
on p. 38. Informally, for each t ∈ [0, 1], we add two types t, t such that in case of an
indifference, t always prefers smaller outcomes, t always larger ones.

On the other hand, In section 4, we consider the set of all single-peaked preferences. A
preference relation t ∈ T is single-peaked if for any x1, x2 ∈ K such that x2 < x1 < τK(t)

or τK(t) > x2 > x1 it holds that τK(t) �t x1 �t x2.

Mechanisms and Strategies A deterministic indirect mechanism asks agents to re-
port one message m ∈ M where M is a message set . The mechanism then chooses an
alternative from K. Formally, an indirect mechanism is a function

g : Mn → K.

In the following, we just write “mechanism” if there is no risk of ambiguity. We assume
implicitly that participation in the mechanism is obligatory. We are interested in the
case where M is finite, k = |M|, hence, where the agents cannot report their complete
preferences, but their report must be noisy.

We call a mechanism g : Mn → K anonymous if for any permutation π : {1, 2, . . . , n} →
{1, 2, . . . , n} and any messages m1,m2, . . . ,mn ∈M, it holds that

g(m1,m2, . . . ,mn) = g(π(m1), π(m2), . . . , π(mn)).

7



Less formally, this is the well-known requirement for a voting system that identity of the
voters should be irrelevant for the outcome of the voting system.

A strategy for agent i, i = 1, 2, . . . , n is a mapping from types to reports, formally

si : K →M, i ∈ {1, 2, . . . , n}.

We stress that we only allow for pure strategies. For strategies s1, s2, . . . , sn i = 1, 2, . . . , n,
and t1, t2, . . . , tn, t′i ∈ T , we will use the notation (si(t

′
i), s−i(t−i)) for

(s1(t1), s2(t2), . . . , si−1(ti−1), si(t
′
i), si+1(ti+1), . . . , sn(tn)) ∈Mn

A mechanism g is said to be implementable in dominant strategies by strategies s1, s2,
. . . , sn if for any m−i ∈Mn−1 if for any i = 1, 2, . . . , n

g(si(ti),m−i) �ti g(m,m−i). (1)

Less formally, si(ti) must be a best response given any other messages the other agents
send.

Finally, one might want to require efficiency of the mechanism.1 We assume two efficiency
requirements, one concerning the mechanisms, one concerning strategies. The first is
needed to rule out different strategies yielding an ex-post identical outcome. A mechanism
is non-wasteful if

for any m,m′ ∈M there is m−i ∈Mn−1 such that g(m,m−i) 6= g(m′,m−i) (2)

The second assumption requires that for the mechanism the size k of the message set is
actually needed: For any message, there is a type that plays it.2

all si : T →M are surjective (3)

1It is unreasonable to assume unanimity or the even stronger property of Pareto optimality of the
mechanism, i.e. the requirement that if all agents have a common most preferred alternative that the
mechanism should implement this alternative, as this leaves no incentive compatible mechanisms as
soon as there are more types with different most preferred alternatives than messages k in the message
setM. Furthermore, the requirement that the outcome should be unanimous w.r.t. the preferences
on the range of the social choice function immediately yields a characterisation result: In this case,
the messages must communicate the top alternative among the alternatives in the range and the range
must be smaller or equal than k.

2Both (2) and (3) are requirements of not wasting communication resources. We separate the two to
stress that one is a requirement on the mechanism, the other a requirement on the strategies.
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Type Distribution and Welfare Maximisation For later welfare maximisation, we
assume that ti ∼ F , i = 1, 2, . . . , n are identically and independently distributed according
to a cumulative distribution function F . This is a classical setting for voting as studied
e.g. in Gershkov et al. 2018.

We call

W (F, g) :=
1

n
E

[
n∑
i=1

uxi(g(s1(t1), s2(t2), . . . , sn(tn)))

]
the average ex-ante welfare of the mechanism g. The factor 1

n
is irrelevant for later utility

maximisation, but important for asymptotic results. A mechanism that is ex-ante welfare
maximising is said to be first-best. A mechanism that is ex-ante welfare maximising among
all anonymous, non-wasteful mechanisms that are dominant strategy implementable by
surjective strategies is called second-best. This is non-standard terminology. It would
be more specific to write constrained first-best with respect to restricted communication.
For the sake of brevity and as we do not cover first- or second-best mechanisms without
restricted communication, we choose to just write first- and second-best.

Notions from the literature on voting with unrestricted communication In
a setting, where M = T , there is enough capacity for the agents to communicate their
full type, i.e. the revelation principle holds for such mechanisms. We will need some
terminology from this literature. We call functions f : T n → K social welfare functions
and say that a mechanism g : Mn → K and strategies si : T →M implement f if

f(t1, t2, . . . , tn) = g(s1(t1), s2(t2), . . . , sn(tn))

If si : T → M = T can be chosen to be the identity, then g is said to be strategy-proof.
With unrestricted communication, a mechanism is dominant strategy implementable if
and only if it is strategy-proof. Furthermore, we call a mechanism unanimous if τK(t1) =

τK(t2) = · · · = τK(tn) implies g(s1(t1), s2(t2), . . . , sn(tn)) = τK(t1).

In a setting withM = K = T = R (full communication) and quadratic preferences, it is
well known that the first-best mechanism, the welfare maximising decision rule disregard-
ing incentives is the mean and the second-best mechanism is given by so-called generalised
median voting rules. We will show that there are generalisations of both results to the
present model. We start with the characterisation of first-best mechanisms.
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f↑(m1) f↑(m2)
f↑(m3)

f↑(m4)
f↑(m5)

f↓
−1

({m1}) f↓
−1

({m2}) f↓
−1

({m3}) f↓
−1

({m4}) f↓
−1

({m5})1

0.5

x

f(x)

Figure 2: Example of anM-quantisation for a log-normal distribution (µ = 0, σ = 1).

3 Characterisation and Welfare Loss of First-Best

Mechanisms

In this section, we consider quadratic utility functions uti(x) = −(t − x)2 and T = K =

[0, 1].3 We will characterise the first-best mechanisms and give a tight characterisation of
convergence of ex-ante average welfare.

We first need the notion of anM-quantisation of a distribution F .

Definition. Let F : R → [0, 1] be a distribution and X ∼ F . Then an M-quantisation
of F is a pair of functions (f ↓, f ↑), f ↓ : R→M, f ↑ : M→ R. For square-integrable F ,
(f ↓, f ↑) is called optimal if it minimises

MSE(F, (f ↓, f ↑)) := E[‖X − f ↑(f ↓(X))‖2
2] = E[(X − f ↑(f ↓(X)))2].

with respect to f ↓ : R→M and f ↑ : M→ R. Call the minimiser MSE∗(F ).

We also say that X is quantised to quantisation level f ↓(X) with representative point
f ↑(f ↓(X)).

An example of a quantisation is shown in Figure 2. The log-normal distribution, that is
sometimes used to model income distributions, is approximated by a linear combination
of point measures, here denoted by bars. The function f ↓ can be seen as partitioning the
positive real line into intervals via their preimages, here denoted by braces. Values within
an interval are all mapped to the same value mi, that is mapped to the representative
point f ↑(mi).

3The choice of the unit interval is merely for notational convenience – any other compact interval would
allow for similar results as the ones obtained here.
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There is a well-known necessary condition for the optimal M-quantisation, Lloyd 1982;
Max 1960.

Proposition (Lloyd 1982, Eqn. (16) and (17)). The optimal M-quantisation satisfies
the following two conditions:

f ↓(x) = arg minm∈M(x− f ↑(m))2 (4)

f ↑(m) = EX∼F [X| X ∈ (f ↓)−1({m})] (5)

The resulting quantisation is also called Lloyd-Max quantisation.

Equation (4) says that each value shall be mapped to the closest representative point of
any quantisatin level, equation (5) says that the representative point of a quantisation level
shall be the centroid of all points that are mapped to this level. Optimal quantisations
can be computed via Lloyd’s algorithm Lloyd 1982.

The main result of this section uses quantisation to give a strong necessary condition for
first-best mechanisms with restricted communication:

Theorem 1 (Classification of first-best mechanisms). Let F be a square-integrable, [0, 1]-
valued distribution with optimal M-quantisation (f ↑, f ↓) and variance σ2. Then there is
a first-best mechanism gfirst-best together with implementing strategies s1, s2, . . . , sn such
that

gfirst-best(m1,m2, . . . ,mn) =
1

n

n∑
i=1

f ↑(mi)

si(x) = f ↓(x).

In addition, −W (F, gfirst-best) = 1
n

MSE∗(F ) + n−1
n
σ2.

In other words, the same quantisation is applied to each agent’s type separately and the
reported representative points are averaged.

In the case of unrestricted communication, the best average welfare is obtained by the
mean mechanism, the social choice function f : T n → K, (t1, t2, . . . , tn) 7→ 1

n

∑n
i=1 ti.

It obtains an average welfare of W (F, f) = −n−1
n
σ2. Therefore, it is fair to consider

−W (F, f) − n−1
n
σ2 ≥ 0 for average welfare comparison. We show quadratic convergence

of average welfare in k, the number of signals an agent can send, matching existing results
in the literature on mechanism design with monetary transfers Bergemann, Shen, Xu, and
E. M. Yeh 2011; Blumrosen, Nisan, et al. 2007 and linearly in the size of the society n.
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Proposition 2 (Convergence of average welfare for first-best mechanism). Let F be a
distribution on [0, 1] with variance σ2. For anyM with |M| = k, we have

1

12nk2
≤ −n− 1

n
σ2 −W (F, gfirst-best) ≤

1

4nk2
, (6)

hence n−1
n
σ2 +W (F, gfirst-best) ∈ Θ(k−2) ∩Θ(n−1).

Note that the loss due to quantisation is relatively minor: If k is kept fixed, then consid-
ering the limit in n, the welfare loss of the first-best mechanism without communication
restrictions (an average welfare of zero would mean that everyone has assigned exactly her
type) is of another order of magnitude as the difference in welfare between the first-best
mechanism with unrestricted communication and the first-best mechanism.

Remark. In light of Bergemann, Shen, Xu, and E. Yeh 2012, Section 2.2, one might
ask why there is no advantage of vector quantisation in this model, i.e. why it is welfare
maximising to treat each type seperately. This is based on a problem in the model of
Bergemann, Shen, Xu, and E. Yeh 2012. The authors note that the problems of multi-
product and multi-agent auctions are mathematically equivalent. In a setting that the
paper Bergemann, Shen, Xu, and E. Yeh 2012 models, they are likely not: If vector
quantisation is used, then the mechanism does not depend separately on each type, but
the mechanism depends on all types lying in a complex set in T n. To decide in which of
these regions the agents’ types lie in, the agents have to communicate their type to each
other—likely not possible in a setting of restricted communication.

Finally, we consider the cardinality of the range of first-best mechanisms. Even with
a trivial lower bound we can show that the range grows at least linearly, despite the
communication of agents being bounded. Although this result is tight, we believe that
generically in the set of measuresM([0, 1]) much better lower bounds hold.4

Corollary 3 (Range of first-best mechanisms). |range gfirst-best| ≥ (k − 1)n+ 1 and this
bound is tight.

In this section, we hence saw that first-best mechanisms are anonymous, their average
welfare converges quadratically in k and linearly in n and their range grows at least
linearly both in k and n.

4The proof of the following result(s) can be found in the appendix.
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4 Characterisation and Welfare Loss of Incentive

Compatible Mechanisms

In many situations, the first-best is not implementable in dominant-strategies. This occurs
even for |M| = 3.

Example. Consider quadratic utilities ux : T → R+, u
x(t) = −(x − t)2. Let F be the

uniform distribution on [0, 1] and let M = {1, 2, 3}. Then the Lloyd-Max conditions (4)
and (5) determine the optimalM quantiser up to enumeration ofM and F -zero sets. It
is called the uniform quantiser (cf. Bergemann, Shen, Xu, and E. M. Yeh 2011, Example
1):

f ↓(x) =


1 if x ∈ [0, 1

3
]

2 if x ∈ (1
3
, 2

3
]

3 if x ∈ (2
3
, 1]

f ↑


1 7→ 1

6

2 7→ 3
6

3 7→ 5
6

Hence, by Theorem 1 the first-best mechanism resp. implementing strategies are

gfirst-best(m1,m2, . . . ,mn) =
1

6
m1 +

1

2
m2 +

5

6
m3 si(t) = f ↓(t)

where mj = 1
2
|{i = 1, 2, . . . , n | mi = j}|. Problematically, agent i can profitably deviate

from strategy si: Assume ti ∈ (1
2
, 2

3
) and let m1 > m3. In this case, gfirst-best(1,m−i) <

gfirst-best(2,m−i) < gfirst-best(3,m−i) <
1
2
< ti. Hence, i can deviate by sending 3 instead of

2.

The observation that the possibility to announce extreme alternatives breaks incentive
compatibility has been the starting point of the voting literature, Galton 1907. As this is
present also in our model, we continue to characterise dominant strategy implementable
mechanisms—for tractability on the domain of single-peaked preferences.

Generalised median voting schemes are well-known in the literature on strategyproof social
choice. They have been shown to be exactly the unanimous, anonymous, strategyproof
mechanisms Moulin 1980.

Definition. A generalised median voting scheme is a social choice function f : T n → K
such that there are α1, α2, . . . , αn−1 ∈ K (the phantom ballots) such that

g(t1, t2, . . . , tn) = med{τ(t1), τ(t2), . . . , τ(tn), α1, α2, . . . , αn−1},

where medA for A ⊆ K is the median with respect to the order on K.
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T
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f2
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f3
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f4

t1 t2 t3 t4 t5 t6 t7

M∼= F ⊆ K

g(s1(t1), s2(t2), . . . , sn(tn)) = f3

s−1i ({f1}) s−1i ({f2}) s−1i ({f3}) s−1i ({f4})

Figure 3: Embedded generalised median voting rules

We define a communication-restricted variant of generalised median voting rules: embed-
ded generalised median voting rules.

Definition. An embedded generalised median voting rule is a mechanism g : Mn → K
if there is an injective function ι : M→K (the embedding) and α1, α2, . . . , αn−1 ∈ range ι

(the phantom ballots) such that

g : Mn → Kg(m1,m2, . . . ,mn) = med{ι(m1), ι(m2), . . . , ι(mn), α1, α2, . . . , αn−1}.

Figure 3 illustrates generalised median voting rules. As for the first-best mechanisms,
the strategies si yield a partition of the type space that is illustrated by braces. There
is a bijective mapping between the message spaceM and the range F of the mechanism
g. The agents send messages m that are interpreted as the representative point ι(m)

depending on which set in the partition they lie in (upwards arrows). The votes for
the different values are interpreted as ballots in a generalised median voting rule (black
bullets). Together with phantom ballots (grey bullets) that can only lie on representative
points, the median is implemented (downwards arrow).

The following is the main result of this section. It shows that a restriction on the com-
munication of agents to the principal rules out all mechanisms but embedded generalised
median voting rules.

Theorem 4 (Classification of dominant incentive compatible anonymous non-wasteful
mechanisms, single-peaked). Let T be the set of single-peaked preferences on K. Then
g : T n → K is anonymous, non-wasteful and DIC implementable by surjective strategies
if and only if it is an embedded generalised median voting rule.
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This theorem is surprising in several respects: First, it shows that a communication bound
on the messages that agents can send in a DIC regime leads endogenously to an embedding
of the message set into the choice set and hence that the optimisation problem for the
second-best mechanism consist of optimising the positions of both representative points
and phantom ballots. Given the positions of the representative points, analytic solutions
for the distribution of phantom ballots in a second-best mechanism has been given in
Gershkov et al. 2017 under mild conditions on the type distribution.

Second, the theorem says that a bound on the communication implies that the commu-
nication from the principal to the agents will be limited: k values in K numbers (the
positions of the representative points) and k integers of size smaller than n (the numbers
of phantom ballots on each representative point). An immediate corollary of Theorem 4
is:

Corollary 5 (Range of second-best mechanism). The second-best mechanism has a range
of cardinality at most k.

Third, Theorem 4 can be seen as evidence for the prevalence of parties in representative
systems. For example, in Germany, the constitutional foundation of elections of the
German parliament is given in Article 38 of the German Grundgesetz with no reference
to parties. Only the election of representatives is considered. Only in article 21, parties
are mentioned, with no reference to elections, but with reference to formation of the
political will (“politische Willensbildung”). Theorem 4 says that when the communication
of voters is limited, e.g. due to intellectual limits of voters in evaluating a large number
of different positions, then a small number of “parties” with representative points on
the political spectrum will form and votes are taken among parties subject to qualified
majority requirements or equivalently generalised median voting rules (compare Barberà
2001, p. 630 or Gershkov et al. 2017, Section 3).
The DIC requirement in Theorem 4 is a robustness requirement that only holds if the
beliefs of agents are precarious. In particular, it is to be expected that the range of
mechanisms with weaker assumptions on incentive compatibility such as BIC might be
larger.

Fourth, this theorem implies that dominant strategy implementability might mean a large
welfare loss. The following contribution shows that embedded generalised median voting
rules are too restricted to guarantee a quadratic convergence of welfare in k.

As in the case of the first-best mechanism, it is a question what to compare the welfare
of an embedded generalised median voting rule to. One should disentangle three sources
of welfare loss: The first loss of n−1

n
σ2 is due to the fact that the agents need to find one
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common value to implement. The second is the welfare loss due to incentive compatibility.
The third is the loss due to quantisation. To get the effect of quantisation within incentive
compatible models, we compare the welfare of any generalised median voting rule, one of
which is the second-best mechanism in a model without communication restrictions, to
any embedded generalised median voting rule.

For tractability, we assume quadratic utilities. Confirming intuition, the welfare maximis-
ing embedded generalised median voting rule converges in welfare to the welfare maximis-
ing DIC mechanism without communication restrictions. 5

Proposition. Let g be a welfare maximising unanimous, anonymous, strategy-proof mech-
anism g in a model without communication restriction, i.e. a generalised median voting
rule and F any distribution on [0, 1]. Then there is a sequence (gk)k∈N of embedded
generalised median voting rules gk : Mn → K with |M| = k such that

W (F, g)−W (F, gk) ∈ o(1).

On the other hand, even for n = 2, this convergence is strictly slower than the conver-
gence of the first-best mechanism to the first-best in a model without communication
restrictions.6

Proposition 6 (Welfare comparison for second-best mechanism). Assume quadratic pref-
erences and n = 2. There is a distribution F such that the following holds:

Let g be any unanimous, anonymous, strategy-proof mechanism g in a model without
communication restriction, i.e. a generalised median voting rule, and let (gk)k∈N be any
sequence of embedded generalised median voting rules gk : Mn → K with |M| = k. Then

W (F, g)−W (F, gk) ∈ Ω(k−1).

where Ω is the Landau symbol for at most as fast convergence.

Hence, the welfare loss due to quantisation is larger in the case of DIC mechanisms than
in the first-best case.

We remark that it is not too hard to get upper bounds on the welfare of gk as opposed
to the difference in welfare to generalised median voting rules—the kind of result we gave
above: As gk takes only k values, the bound in Bergemann, Shen, Xu, and E. Yeh 2012,
Lemma 1 might be employed if one recognises that social welfare functions implemented

5The proof of the following result(s) can be found in the appendix.
6The proof of the following result(s) can be found in the appendix.
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by indirect mechanisms and strategies are examples of vector quantisers, cf. Bergemann,
Shen, Xu, and E. Yeh 2012. Unfortunately, application of their result does not give
a general lower bound when comparing embedded generalised median voting rules to
generalised median voting rules or the mean rule.

We close this section with a strengthening of Weymark 2011, Theorem 4 for non-interval
ranges of the range of the social choice function, which is proved similar in spirit as
Theorem 4.

Proposition 7 (Characterisation of strategyproof anonymous mechanisms for non-in-
terval ranges). Let T be set of single-peaked preferences. Let f : T n → K be a social
choice function. Then, f is strategy-proof and anonymous if and only if there there are
α1, α2, . . . , αn−1 such that for

f ′ : range f → range f, f ′(t1, t2, . . . , tn) = med{t1, t2, . . . , tn, α1, α2, . . . , αn−1} (7)

it holds that

f(t1, t2, . . . , tn) = f ′(τrange f (t1), τrange f (t2), . . . , τrange f (tn)).

One might wonder why there is no (n + 1)-parameter generalised median voting rule
involved. This is due to the requirement that f ′ must be surjective by definition and
Lemma 1, that is proved on p. 31 in the appendix.

This result says that DIC anonymous mechanisms might pool agents with types adjacent
in T in a way that agents report their top preference in range(f) and then a generalised
median scheme is applied. Hence the mechanisms are not tops-only in general but tops-
only on the range of the mechanism.

5 A Preference Restriction for Voting with Restricted

Communication

The Sections 3 and 4 are disconnected in the sense that the domain of quadratic prefer-
ences is strictly smaller than the set of single-peaked preferences.
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Figure 4: Linear preference domain

Example. The quadratic voting model does not induce the complete set of single-peaked
preferences. Indeed, the utility function

ux(t) =

x− t x < t

−(x− t)2 x ≥ t

induces a single-peaked preference with peak x ∈ K. Any quadratic utility is symmetric in
the sense that if x1 < x2 ∈ K, x+ ε �x+y

2 y and y + ε �x+y
2 x for any ε > 0. But for the

preference induced by ux, this holds only if x− y = 2.

One should aim for results for small preference domains, as in many models, it might con-
tradict fundamentals of the model if agents are allowed to report too many preferences.

To show that the generality of the preference domain we are going to define, we present
a continuous variant of the linear preference domain from Romer et al. 1975.

Definition (Linear Preferences). Let a : [0, 1]→ R be a strictly decreasing and b : [0, 1]→
R≥0 be a strictly increasing, nonnegative function. Consider the utility functions uxlin.(t) =

a(x) + b(x)t.

The model has been used to model elections on linear tax schedules. uxlin.(t) is the post-tax
income for productivity type t under tax schedule choice x.

Figure 4 shows the linear model. Each type’s preference is given from the highest utility
to the lowest. The preferences of the agents t, t′ and t′′ are

x1 �t x2 �t x3
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(a) Quadratic case
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(b) Linear case

Figure 5: Indifferences.

x2 �t
′
x1 ∼t

′
x3

x2 �t
′′
x3 �t

′′
x1

As in the quadratic environment, the preference of agent t′ depends on how indifferences
are resolved. The informal construction on p. 7 that is formally given on 38 suuffices to
give a sufficiently rich domain of preferences.

As the quadratic case, this model does not induce all single-peaked preferences. Indeed,
the example in Gershkov et al. 2017, p. 7f. for a finite choice set K can be applied here
as well.

After having defined two utility models for voting with restricted communication, we con-
tinue with the definition of a sufficiently general preference restriction that generalises the
two. Candidates are maximally single-crossing domains. On these, strong characterisa-
tion results for strategy-proof mechanisms have been proved. In the following definition,
we use the notation TA = {t|A×A | t ∈ T } for the preferences in T restricted to the set
A ⊆ K.
However these domains are required to be too large to be useful for the study of mecha-
nisms of restricted communication. The reason are intersection points of utility functions:
If a type has several crossings of utility functions (and this number is not necessarily
bounded, neither for the quadratic nor for the linear model), then a simple resolution of
indifferences as we proposed will mean that adjacent types might have different relative
rankings of more than two alternatives which is not permitted by maximality (compare
Gershkov et al. 2017, Fn. 28). More complicated indifference-resolution schemes are
harder to be shown to be single-crossing, if even existent. For the quadratic model, the
property that all preferences on TA, A ⊂ K finite, do not contain any crossing point is
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generic. However, to find a second-best, the set A is itself optimised and non-generic
outcomes might be maximisers. Therefore, we consider a domain restriction that allows
for multiple crossing points on TA with our indifference resolution scheme.

Definition. For a totally ordered set T of preference relations on K we define:

(a) T is called regular domain if for any k ∈ K there is t ∈ T for which k = τK(t).

(b) T is called single-crossing if k < k′ ∈ K, t < t′ ∈ T k �t k′, then k �t′ k′.

(c) T is called tops-connected if for any finite set A ⊆ K, and adjacent x, y ∈ A, i.e.
there is no z ∈ A such that x < z < y or x > y > z there is tA ∈ TA such that
τA(tA) = x, τA\{x}(tA) = y.

Regularity, single-crossing and tops-connectedness are depicted in Figure 6 for both the
quadratic and the linear preference domain. A preference domain is regular if the func-
tion τT : T → K is surjective, hence if there are no alternatives that are never the
most-preferred alternatives. In the quadratic case, this holds unconditionally (compare
Figure 6a) and in the linear case conditional on ux touching maxt∈R u

x(t) (compare Fig-
ure 6b). Single-crossingness is the requirement that if one type prefers a larger alternative
to a smaller, then so do all larger types as well (compare Figure 6c and Figure 6d). If the
preferences are represented by utility functions, this is the requirements that the utility
functions only cross a single time. Tops-connectedness is perhaps the least well known
notion of the three. It says if we consider any finite subset (e.g. {x1, x2, x3, x4} ⊆ K),
then for adjacent alternatives such as x1 and x2, there is a type t ∈ T such that x2 is the
first and x3 the second. In Figure 6e and Figure 6f, this is the case for all types t ∈ [t′, t].

A first reason why this preference restriction might be a sensible domain for the study
of communication-constrained voting is that that the linear and quadratic preference
domains are RST domains under intuitive conditions.

Proposition 8 (Linear and quadratic preferences domains are RST). (a) The quadra-
tic domain is an RST domain.

(b) The linear preference domain is an RST domain if and only if (ux)x∈[0,1] are the
sub-differentials of a convex function.

The requirement that the ux should form the tangents of a convex function is that if agents
choose their most preferred tax schedule, the after-tax income should grow super-linearly
in the productivity type, which is fair to assume.
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Figure 6: Regularity, single-crossing and tops-connectedness for quadratic and linear preference domains.
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The second reason is that Theorem 4 holds more generally under two conditions. Property
A requires the mapping types to tops to be monotonic and surjective. Property B requires
a characterisation of strategyproof, anonymous, surjective social choice functions.

Definition (Properties A and B). Let T be a preference domain. It is said to have
property A if for any subset T of A, τA : TA → A is monotone and surjective.7

It is said to have property B if for any finite A ⊆ K a social choice function T nA → A is
strategy-proof, surjective and anonymous if and only if it is an generalised median voting
rule on TA.

The significance of the two properties lies in the fact that they suffice to make the state-
ment of Theorem 4 hold.

Theorem 9 (Classification of dominant incentive compatible anonymous non-wasteful
mechanisms, axiomatic). Let T be a preference domain that satisfies properties A and
B. Then g : T n → K is anonymous, non-wasteful and DIC implementable by surjective
strategies if and only if it is an embedded generalised median voting rule.

Property A is relatively easy to prove for RST domains.8

Proposition (RST domains: property A). RST domains satisfy property A.

We conjecture that RST domains also satisfy property B.

Conjecture (RST domains: property B). RST domains satisfy property B.

As evidence that this conjecture, we show a very similar in that unanimity instead of sur-
jectivity is required. Using Lemma 1 and Proposition 11, which might be of independent
interest and which is stated below, this evidence is a corollary of Achuthankutty and Roy
2018, Corollary 6.2.

Corollary 10 (Anonymous version of Achuthankutty and Roy 2018, Corollary 6.2).
Assume that T is an RST domain. Then for any finite A ⊆ K, a social choice function
T nA → A is strategy-proof, surjective and anonymous if and only if it is an generalised
median voting rule on TA.

7Note that to say that τA is surjective is to say that TA is a regular domain.
8The proof of the following result(s) can be found in the appendix.
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To strengthen Theorem 4, we would need a stronger statement which replaces unanmimity
by surjectivity. We leave the proof of for further work.

To close this section, we state an independent formulation of a part of the proof of
Weymark 2011, Theorem 4. Recall that a max-min social choice function is defined by
numbers {bS}S⊆{1,2,...,n} ⊂ K such that bS ≤ bT for any S ⊆ T . Then define

gmin-max(t1, t2, . . . , tn) = min
S⊆{1,2,...,n}

max
i∈S
{τK(ti), as}.

Min-max social choice functions have a very clear interpretation in terms of successive
voting procedures, compare Barberà 2001, p. 630.

The following result characterises anonymous min-max social choice functions.9

Proposition 11 (Anonymous min-max is generalised median). Let T be regular. Then
a min-max social choice function is anonymous if and only if it is an (n + 1)-parameter
generalised median voting scheme.10

Similar formulations are possible for Weymark 2011, Theorems 3 and 5.

The present section might raise the interest in obtaining further classification results for
strategy-proof, surjective mechanisms as these imply a strengthening of Theorem 4.

6 Conclusion

The present thesis studied information-constrained voting. The main difference to other
models of voting is that the assumption of abundant capacity of communication from the
agents to the principal is dropped. The number of messages agents are allowed to send is
limited and indirectly dominant strategy implementable mechanisms are considered. No
revelation principle can be used in this setting. Our contributions are threefold:
First, we characterised the first-best mechanism in a model of voting with quadratic pref-
erences. We found: The first-best mechanism is automatically anonymous and agents’
strategies are partitional in the sense that agents report an interval in which their type
lies. The intervals are given by an optimal quantisation of the common type distribution,
which can be computed tractably due to a strong necessary condition, the Lloyd-Max con-
dition. Given the reported intervals, the first-best mechanism implements the weighted
average of the interval centroids according to how many agents reported each interval.

9The proof of the following result(s) can be found in the appendix.
10For the definition of (n+ 1)-parameter generalised median voting rules see p. 31.
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The interval centroids can be interpreted as ideological centers of groups of voters or
members of a party. Furthermore, we show a tight bound on the growth of the cardinality
of the range of a first-best mechanism.
Second, we characterise the class of non-wasteful, anonymous mechanisms that are dom-
inant strategy implementable by surjective strategies on the preference domain of single-
peaked preferences. We show that these mechanisms are exactly embedded generalised
median voting rules. The strategies implementing these rules are partitional as in the
first-best case, however, even in the quadratic voting model, the representative points in
the intervals that are aggregated need not be interval centroids anymore. Aggregation
of the representative points is according to a generalised median voting rule. In partic-
ular, if aggregation is done instead by the mean by a generalised median voting scheme,
a mechanism implementable by the same strategies in dominant strategies is obtained.
The choice of representative points might however not be welfare maximising. One can
conclude that incentives change party positions. In contrast to the first-best case, we
obtain that the cardinality of the range of non-wasteful, anonymous mechanisms that are
dominant strategy implementable by surjective strategies is at most the number of signals
each agent might send.
Finally, we compare the welfare loss due to quantisation for the class of all indirect mech-
anisms and embedded generalised median voting rules (that were shown to be the only
DIC mechanisms on the domain of single-peaked preferences). We show that the welfare
loss due to quantisation for the case of indirect mechanisms (hence without incentive con-
straints) converges in the size k of the message set as Θ(k−2). In contrast, for quadratic
preferences there is a distribution such that the welfare difference of any generalised me-
dian voting rule and any embedded generalised median voting rule converges at most
linearly, Ω(k−1 even in the case of two voters, n = 2. This is evidence that the wel-
fare loss due to restricted communication might be particularly large when additionally
requiring incentive compatibility.

quantify the welfare gap between first- and second-best mechanisms in the quadratic
voting model. The average welfare loss compared to the welfare of the agents’ most
preferred alternative converges quadratically in the number of messages agents can send
and is constant in the size of the society. There are however distributions such that the
average welfare deteriorates for large societies. This shows that in a model of restricted
communications, incentive compatibility is costly.

One major limitation of the present results should be mentioned:
The present results are disconnected in that the classification theorem for dominant strat-
egy implementable mechanism is proved for the complete domain of single-peaked prefer-
ences, whereas most other results are related to the quadratic voting model. We gave a

24



definition of the domain specification of regular, single-crossing and tops-connected pref-
erences and posed a conjecture that would strengthen our result. This conjecture remains
open and is necessary to complement the present results.

We mention three extensions of our work that could yield valuable insights:

BIC The present thesis studied dominant strategy implementable, anonymous, non-
wasteful on the one hand side and first-best mechanisms on the other side. Although
dominant strategy implementable mechanisms are desirable due to their robustness, BIC
is often a preferred model as it allows for more flexible mechanisms. Recall that a mecha-
nism is Bayesian implementable if all players send messages that maximise their expected
payoffs. welfare maximising, Bayesian incentive compatible mechanisms are likely to have
a growing range in the size of the society—due to the intractability of Bayesian incentive
compatible voting this remains an open problem. Evidence pointing in this direction is
that any mechanism g : Mn → K induces a symmetric Bayesian equilibrium under mild
continuity conditions on utilities and non-atomic type distributions (this is a game of fi-
nite actions and continuous types, via the existence result from Mas-Colell 1984, Theorem
2 and via purification, Radner and Rosenthal 1982, Theorem 1) and that computations
for examples in the quadratic voting model for two messages show that the (injective)
first-best mechanism is BIC.11

Proposition. Let F be the uniform distribution on [0, 1] and k = 2. Then the first-best
mechanism is symmetric BIC .

Such a flexibility might be another justification of the existence of political mandates,
i.e. the political agenda of the winning party depending on the outcome of elections as
studied in McMurray 2017.

Higher-dimensional Domains We study the first-best domains. Along the lines of
the proof of Theorem 1, a formulation for multidimensional types and optimal vector
quantisation should not be too hard to prove. As a corresponding theory for the multidi-
mensional incentive compatible case is harder to formulate due to the existence of several
generalisation of single-crossing domains to higher-dimensional types, we leave this for
further research.

11The proof of the following result(s) can be found in the appendix.
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Optimality Conditions for Representative Points We proved that both First- and
Second-Best mechanisms induce an embedding of the message setM into the choice set K.
For first-best mechanisms, tractable necessary conditions for the choice of representative
points exist. It remains a challenge to analyse the optimal position of representative
points in the DIC case.

7 Proofs

Proofs for Section 3

Theorem 1 (Classification of first-best mechanisms). Let F be a square-integrable, [0, 1]-
valued distribution with optimal M-quantisation (f ↑, f ↓) and variance σ2. Then there is
a first-best mechanism gfirst-best together with implementing strategies s1, s2, . . . , sn such
that

gfirst-best(m1,m2, . . . ,mn) =
1

n

n∑
i=1

f ↑(mi)

si(x) = f ↓(x).

In addition, −W (F, gfirst-best) = 1
n

MSE∗(F ) + n−1
n
σ2.

We would like to stress that in the following proof, the quadratic specification is heavily
used two conclude the following:

(a) For fixed strategies, the optimal mechanism will minimise L2-distance of a random
variable subject to measurability constraints and is hence a conditional expectation.

(b) Conditional expectations are linear.

In the interpretation of this result, one should hence keep in mind that likely even for
small variation in the utility specification, the welfare maximising mechanism might be
much more complex.

Proof of Theorem 1. First-best mechanisms solve the optimisation problem

W (F, gfirst-best) =
1

n
max

si : T →M
i=1,2,...,n
g : Mn→K

E
[
−‖g(s1(t1), s2(t2), . . . , sn(tn))− ti‖2

2

]
. (8)
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For ease of notation, we will also write Z for g(s1(t1), s2(t2), . . . , sn(tn)). For the following
formulations, we need further notation: 1 is the all-one vector, t := (t1, t2, . . . , tn) and
〈•, •〉 denotes the Euclidean scalar product. Then the maximand can be written as the
expectation of

−〈Z1− t, Z1− t〉 . (9)

Let t = 1
n

∑n
i=1 ti be the average of the types of the agents. Then we can decompose (9)

linearly:

−〈Z1− t, Z1− t〉 = −
〈
t1− t, t1− t

〉
−
〈
(Z − t)1, (Z − t)1

〉
= −‖t− t1‖2

2 −
n∑
i=1

(g(s1(t1), s2(t2), . . . , sn(tn))− t)2.

Here, the first equality follows by virtue of the vector orthogonality relation t− t1 ⊥ c1

for any c ∈ R, in particular c = g(s1(t1), s2(t2), . . . , sn(tn)) − t. Re-applying expectation
and the maximum, and multiplying by n,

nW (F, gfirst-best) = −E
[
‖t− t1‖2

2

]
− max

si : T →M
i=1,2,...,n
g : Mn→K

E

[
n∑
i=1

(g(s1(t1), s2(t2), . . . , sn(tn))− t)2

]
.

(10)
To find the maximisers s1, s2, . . . , sn and gfirst-best, we can neglect the first summand that
is constant and consider a minimisation problem instead of maximising the negative.
Therefore, the following minimisation problem has the same maximisers as (8):

1

n
min

si : T →M
i=1,2,...,n
g : Mn→K

E

[
n∑
i=1

(g(s1(t1), s2(t2), . . . , sn(tn))− t)2

]

= min
si : T →M
i=1,2,...,n
g : Mn→K

E
[
(g(s1(t1), s2(t2), . . . , sn(tn))− t)2

]
(11)

Consider now the randm variable Z(t1, t2, . . . , tn). The property that Z can only depend
on ti through si and is deterministic given the s1(t1), s2(t2), . . . , sn(tn) can be reformu-
lated in terms of measurability. It is equivalent to Z being measurable with respect to
the σ-algebra generated by events {{si(ti) = m}}i=1,2,...,n

m∈M
. Hence, we can rewrite the

optimisation problem as

min
si : T →M
i=1,2,...,n

 min
Z {{si(ti) = m}}i=1,2,...,n

m∈M
-mb.

E[(Z − t)2]

 .
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Furthermore, there the mapping

{functions T →M}n → {|M|-partitions of T }n,

(si : T →M)i=1,2,...,n 7→ ({s−1
j ({m})| m ∈M})j=1,2,...,n (12)

from tuples of strategies to tuples of partitions is bijective. Hence, we can re-parametrise
the optimisation problem as

min
{Aim| m∈M} partition of T

i=1,2,...,n

 min
Z {{ti ∈ Aim}}i=1,2,...,n

m∈M
-mb.

E[(Z − t)2]

 .

Fix optimal partitions {Aim| m ∈M}, i = 1, 2, . . . , n and consider the inner minimisation
problem. From probability theory we know that the conditional expectation is the L2-
projection of a random variable onto the subspace of measurable random variables with
respect to the σ-algebra it is conditioned on, Billingsley 2008, Theorem 34.16.12 Hence,

Z = E[t|σ({{ti ∈ Aim}}i=1,2,...,n
m∈M

)]

Then by linearity of the conditional expectation, Billingsley 2008, Theorem 34.2 (ii) and
by the independence of ti from ti′ , i 6= i′ for still fixed optimal partitions {Aim| m ∈M},
i = 1, 2, . . . , n,

Z =
1

n

n∑
i′=1

E[ti′| σ({{ti ∈ Aim}}i=1,2,...,n
m∈M

)] =
1

n

n∑
i=1

E[ti| σ({{ti ∈ Aim}}m∈M)]. (13)

Substituting (13) into (11), we obtain

min
si : K→M
i=1,2,...,n
g : Mn→K

E
[
(g(s1(t1), s2(t2), . . . , sn(tn))− t)2

]

= min
{Aim| m∈M} partition of T

i=1,2,...,n

E

( 1

n

n∑
i=1

E[ti| σ({{ti ∈ Aim}}m∈M)]− 1

n

n∑
i=1

ti

)2


= min
{Aim| m∈M} partition of T

i=1,2,...,n

E

( 1

n

n∑
i=1

(E[ti| σ({{ti ∈ Aim}}m∈M)]− ti)

)2


=
1

n2
min

{Aim| m∈M} partition of T
i=1,2,...,n

E

[
n∑
i=1

(E[ti| σ({{ti ∈ Aim}}m∈M)]− ti)2

]

12Because both K and T are bounded and F is a probability measure, L2 integrability of Z is given.
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=
1

n2

n∑
i=1

min
{Aim| m∈M}
partition of T

E
[
(E[ti| σ({{ti ∈ Aim}}m∈M)]− ti)2]

The second to last equality holds as E[ti| σ({{ti ∈ Aij}}j∈[k])] − ti are measurable with
respect to ti, zero-mean, and the ti are independent. In particular, the E[ti| σ({{ti ∈
Aij}}j∈[k])]− ti are uncorrelated zero mean, compare Billingsley 2008, Theorem 4.2. The
last inequality holds as the minimisation in the second to last line is performed for all
i = 1, 2, . . . , n separately.

Finally, as the ti are identically distributed, we can select a common maximising partition
for each summand, i.e. the partitions can be chosen as Am := Aim = Ai′m, 1 ≤ i, i′ ≤
n,m ∈ M. As the ti are identically distributed, we neglect the subscript and write t
instead of ti. Hence

1

n2

n∑
i=1

min
{Aim| m∈M}
partition of T

E
[
(E[ti| σ({{ti ∈ Aim}}m∈M)]− ti)2]

=
1

n
min

{Am|m∈M}
partition of T

E[(E[t| σ({{t ∈ Am}}m∈M)]− t)2]

Using (12) to re-parametrise once more,

1

n
min

{Am|m∈M}
partition of T

E[(t− E[t| σ({{t ∈ Am}}m∈M)])2] =
1

n
min

s : T →M
E[(t− E[t| t ∈ s−1({s(t)})])2].

By (5) and the fact that s is chosen to minimise L2-distance, E[t| t ∈ s−1({s(t)})] =

f ↑(s(t)). Again by the fact that s is chosen to minimise L2-distance and (4), s = f ↓.
Finally, upon substituting,

W (F, gfirst-best) = E
[
‖t− t1‖2

2

]
+ min

f↓ : T →M
f↑ : M→T

E[(X − f ↑(f ↓(X)))2] =
n− 1

n
σ2 +

1

n
MSE∗(F ),

which yields the claim upon rearranging.

Proposition 2 (Convergence of average welfare for first-best mechanism). Let F be a
distribution on [0, 1] with variance σ2. For anyM with |M| = k, we have

1

12nk2
≤ −n− 1

n
σ2 −W (F, gfirst-best) ≤

1

4nk2
, (6)

hence n−1
n
σ2 +W (F, gfirst-best) ∈ Θ(k−2) ∩Θ(n−1).

The following proof is an adaption of Bergemann, Shen, Xu, and E. M. Yeh 2011, Propo-
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sition 3, and up to a constant of 1
2
, the computations are identical. As Bergemann, Shen,

Xu, and E. M. Yeh 2011 studies mechanism design with monetary transfers in a linear
quadratic model, we give the proof of the upper bound in detail and refer to Bergemann,
Shen, Xu, and E. M. Yeh 2011, where the lower bound is provided in sufficient detail.

Proof of Proposition 2. By Theorem 1, −n−1
n
σ −W (F, gfirst-best) = 1

n
MSE∗(F ). Hence, it

suffices to prove 1
12k2
≤ MSE∗(F ) ≤ 1

4k2
.

First note that by the theorem of total expectation for any quantisation (f ↓, f ↑)

MSE(F, (f ↓, f ↑)) = E[(X − f ↑(f ↓(X)))2]

=
∑
m∈M

E[(t− f ↑(mi))
2|f ↑(t) = m]︸ ︷︷ ︸

Var[t|f↓(t)=m]

P[f ↑(t) = m]

Note that MSE∗(F ) ≤ MSE(F, (f ↓, f ↑)). Choose an enumeraion {mi}ki=1 of M. Then
define

f ↓(x) = mi if
i− 1

k
≤ x ≤ i

k
f ↑(mi) = E[t| f ↑(t) = mi].

We remark that, conditional on f ↑(t) = mi,

i− 1

k
≤ t ≤ i

k
.

Hence, conditionally, the range of t has length 1
k
. By the inequality Var[t|f ↓(t) = m] ≤

( 1
2k

)2 = 1
4k2

,

MSE∗(F ) ≤ MSE(F, (f ↓, f ↑))

=
k∑
i=1

Var[t| f ↑(t) = mi]P[f ↓(t) = mi]

≤
k∑
i=1

P[f ↑(t) = mi]
1

4k2
=

1

4k2
.

The lower bound is attained for the uniform distribution, cf. Bergemann, Shen, Xu, and
E. M. Yeh 2011, (5) and Example 1.
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Proofs for Section 4

Theorem 4 (Classification of dominant incentive compatible anonymous non-wasteful
mechanisms, single-peaked). Let T be the set of single-peaked preferences on K. Then
g : T n → K is anonymous, non-wasteful and DIC implementable by surjective strategies
if and only if it is an embedded generalised median voting rule.

Proof of Theorem 4. This follows from Lemma 2 and Theorem 9.

First, we start with some notation. For A ⊆ K dente by TA := {t|A×A | t ∈ T } the
preferences on K restricted to A with the projection function p : T � TA, t 7→ t|A×A.

Second, we need a further definition of a mechanism: A social choice function f : T n → K
is called (n+ 1)-parameter generalised median voting rule if there are α1, α2, . . . , αn ∈ K,
the phantom ballots such that

f(t1, t2, . . . , tn) = med{τK(t1), τK(t2), . . . , τK(tn), α1, α2, . . . , αn+1}.

The difference to generalised median voting schemes is that there are n + 1 instead of
n− 1 phantom ballots.

One easily sees (compare e.g. Weymark 2011, p. 548 bottom) that if we require such a
social choice function to be surjective, then it is a generalised median voting rule.

Lemma 1. An (n+ 1)-parameter generalised median voting rule f : T n → K is surjective
if and only if is a generalised median voting rule.

Proof. By definition of (n+1)-parameter generalised median voting rules, f is a generalised
median voting rule if there are two phantom ballots αi = k, αi′ = k where f ’s phantom
ballots are the other n− 1 phantom ballots. It hence suffices to show that there must be
two such phantom ballots. Assume that the generalised median voting rule is surjective
and that the largest resp. smallest phantom ballot is not on k resp. k. Then there are
n+ 1 phantom ballots on values smaller than k resp. larger than k. But then no matter
how the voter ballots are placed, the median of the n + 1 phantom ballots and n voter
ballots will be smaller than k resp. larger than k. Hence the rule cannot be surjective.
By contradiction, we obtain the result.

Third, we define two properties of preference domains:
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Definition (Properties A and B). Let T be a preference domain. It is said to have
property A if for any subset T of A, τA : TA → A is monotone and surjective.13

It is said to have property B if for any finite A ⊆ K a social choice function T nA → A is
strategy-proof, surjective and anonymous if and only if it is an generalised median voting
rule on TA.

Lemma 2. The preference domain of single-peaked preferences satisfies properties A and
B.

Proof. We start with property A. Monotonicity follows by definition of the order on T .
To prove surjectivity, we define the strict partial order order �̃ on K by

k > x > y ∨ k < x < y ⇒ x � y.

We can refine this partial order to a linear order by Szpilrajn 1930, Theorem on p. 386
(assuming the axiom of choice). This order is by definition single-crossing.

Let us turn to property B. We show that TA is the set of single-peaked preferences on A.
Then Weymark 2011, Theorem 4 in connection with Lemma 1 is sufficient to establish
the claim.

Let first tA ∈ TA and tA = p(t). By single-peakedness, τA(tA) = min{k ∈ A| k ≥ τK(t)}
or τA(tA) = max{k ∈ A| k < τK(t)}. We assume the further, the latter case is similar. By
single-peakedness, for any k ∈ A such that k > τA(t) we have k ≥ τK(t) and hence k ≺tA

τA(tA). Furthermore, for any other k, is must be that k ≤ max{t ∈ A| t < τK(t)} �tA

τA(tA), which implies by single-crossing that k � τK(t). Hence, every preference relation
in TA is single-crossing. Conversely, let tA be a single-crossing preference on A. We would
like to show that there is t ∈ T such that p(t) = tA. Define such a t by the completion of
the strict partial order � that is defined by

(τA(tA) > x > y ∨ τA(tA) < x < y)⇒ x � y,

which exists again by Szpilrajn 1930, Theorem on p. 386.

Then the following theorem implies Theorem 4.

Theorem 9 (Classification of dominant incentive compatible anonymous non-wasteful
mechanisms, axiomatic). Let T be a preference domain that satisfies properties A and

13Note that to say that τA is surjective is to say that TA is a regular domain.

32



B. Then g : T n → K is anonymous, non-wasteful and DIC implementable by surjective
strategies if and only if it is an embedded generalised median voting rule.

Before coming to the proof of Theorem 9, we start with a few more lemmas.14

Lemma 3. If g : Mn → K is anonymous, non-wasteful and dominant strategy imple-
mentable by strategies s1, s2, . . . , sn : T →M, then si = si′ , 1 ≤ i, i′ ≤ n.

Lemma 4. Let A ⊆ K. Let x, y ∈ A be adjacent, i.e. there is no z ∈ A such that
x < z < y. Let α1, . . . , αn−1 ∈ [k, x] ∪ [y, k] and i = 1, 2, . . . , n. Then for h : A →
A, (a1, a2 . . . , an) 7→ med{a1, a2, . . . , an, α1, α2, . . . , αn} there is a−i ∈ An−1 such that

x = h(x, a−i) 6= h(y, a−i) = y.

Proof of Theorem 9. We first show that every embedded generalised median voting rule g
is anonymous, non-wasteful and dominant strategy implementable by surjective strategies.
Anonymity is clear and and non-wastefulness follows by Lemma 4. Consider strategies

si(t) = sj(t) = ι−1(τrange g(t)).

These strategies are well-defined and surjective as ι is bijective (this follows from α1, α2,
. . . , αn−1 ∈ range ι) and by the surjectivity part of property A.

Concerning dominant strategy implementability, fix m−i ∈Mn−1. Then again by the sur-
jectivity part of property A and bijectivity of ι, there is t−i such thatmi′ = ι−1(τrange g(ti′)),
i′ = 1, 2, . . . , n. As an abuse of notation, we in the following equation f(t−i) instead of
(f(t1), f(t2), . . . , f(tn)) for several functions f . By definition,

g(s1(t1),m−i) = med(ι(ι−1(τrange g(ti))), ι−i(m−i), α1, α2, . . . , αn−1)

= med(ι(ι−1(τrange g(t1))), ι−i(ι
−1
−i (τrange g(t−i))), α1, α2, . . . , αn−1)

= med(τrange g(ti), τrange g(t−i), α1, α2, . . . , αn−1).

The social choice function

f ′ : T nrange g → Trange g, g(t1, t2, . . . , tn) = med(τrange g(ti), τrange g(t−i), α1, α2, . . . , αn−1)

is a generalised median voting rule, and hence strategy-proof by property B. Hence

g(s1(ti),m−i) = med(τrange g(ti), τrange g(t−i), α1, α2, . . . , αn−1)

14The proof of the following result(s) can be found in the appendix.
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�ti med(τrange g(t
′
i), τrange g(t−i), α1, α2, . . . , αn−1)

= g(si(t
′
i),m−i),

which implies dominant strategy implementability. We now prove the contrary.

(a) Fix a mechanism g : Mn → K that is dominant strategy implementable by s1,
s2, . . . , sn : T →M. The social choice function

f : T n → K, f(t1, t2, . . . , tn) = g(s1(t1), s2(t2), . . . , sn(tn))

is strategyproof. Indeed, fix any i = 1, 2, . . . , n, t−i ∈ T n−1 and ti, t′ ∈ T . Then

f(ti, t−i) = f(si(ti), s−i(t−i)) �ti g(si(t
′), s−i(ti)) = f(t′, s−i(t−i)),

where the preference is a consequence of s1, s2, . . . , sn forming a dominant strategy
equilibrium.

(b) Let F = range(f). f does only depend on the preferences on the set F , i.e. for
any ti, t′i ∈ T , t−i ∈ T n−1 with p(ti) = p(t′i) it holds that f(ti, t−i) = f(t′i, t−i). In-
deed, f(ti, t−i) �ti f(t′i, ti) and f(ti, t−i) �t

′
i f(t′i, t−i) by strategy-proofness but also

t(ti, t−i) �ti f(t′i, t−i) as p(ti) = p(t′i). Hence, the assertion follows by antisymmetry.

We can conclude that the function f̃ : T nF → K that satisfies f̃(p(t1), p(t2), p(tn)) =

f(t1, t2, . . . , tn) is well-defined. By definition of f , we also have

f̃(p(t1), p(t2), . . . , p(tn)) = g(s1(t1), s2(t2), . . . , sn(tn)) (14)

Note in particular, that as f is strategy-proof, so must be f̃ .

(c) f̃ is anonymous. Indeed, Let t̃1, t̃2, . . . , t̃n ∈ TF and π ∈ Sn. Then, as p is surjective,
there are t1, t2, . . . , tn ∈ T such that p(ti) = t̃i for all i = 1, 2, . . . , n. Hence,

f̃(t̃1, t̃2, . . . , t̃n)) = f̃(p(t1), p(t2), . . . , p(tn))

= g(s1(t1), s2(t2), . . . , sn(tn))

= g(sπ1(tπ1), sπ(2)(tπ(2)), . . . , sπ(n)(tπ(n)))

= f̃(p(tπ(1)), p(tπ(2)), . . . , p(tπ(n)))

= f̃(t̃π(1), t̃π(2), . . . , t̃π(n))).

Hence, f̃ is anonymous and strategy-proof on the preference domain TF .
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(d) By property B f̃ must be an (n+ 1)-parameter generalised median voting rule as it
is strategyproof and anonymous. As it is surjective, it must be a generalised median
voting rule by Lemma 1. In particular, it is tops-only, i.e. depends on types ti only
through τK(ti). Hence, there is a function f ′ : Fn → K such that

f̃(p(t1), p(t2), . . . , p(tn)) = f ′(τF(p(t1)), τF(p(t2)), . . . , τF(p(tn)))

= f ′(τF(t1), τF(t2), . . . , τF(tn)), (15)

where τF denotes the top alternative within the set F . Note that in a slight abuse
of notation, τF : TF → F in the second to last term and τF : T → F in the last term
are denoted by the same symbol. Hence,

f ′(τF(t1), τF(t2), . . . , τF(tn)) = g(s1(t1), s2(t2), . . . , sn(tn)) = f(t1, t2, . . . , tn). (16)

(e) Consider the equivalence relation ∼ on T defined by

t ∼ t′ : ⇐⇒ f(t, t−i) = f(t′, t−i), for any t−i ∈ T

Then equivalence classes of this equivalence relation are connected sets in the ordered
set T . Indeed, assume the contrary. Then there are t′ < t < t′′ ∈ T such that
t′ ∼ t′′, t′ 6∼ t and t 6∼ t′′. By the monotonicity part of property A, we know
that τF(t′) ≤ τF(t) ≤ τF(t′′). Furthermore, as t 6∼ t′ there is t−i ∈ T n−1 such
that f(t′, t−i) 6= f(t, t−i). As f(ti, t−i) = f ′(τF(ti), τF(t−i)) and f ′(•, τF(t−i)) is the
marginal of a generalised median voting rule, which is monotone, it must be that

f(t′, t−i) = f ′(τF(t′), τF(t−i)) < f ′(τF(t), τF(t−i)) ≤ f ′(τF(t′′), τF(t−i)) = f(t′′, t−i),

hence f(t′, t−i) < f(t′′, t−i) and hence t′ 6∼ t′′, which is a contradiction. Hence, the
equivalence classes are connected sets in T . As si = sj, 1 ≤ i, j ≤ n by Lemma 3,
we can from now on suppress the subscript and write just s for the strategies.

(f) Let

A := {s−1({j})|j ∈M} B := {τ−1
F ({f})| f ∈ F}.

We show that A = B. This implies that there is a bijection ι : M→ F ↪→ K such
that ι(s(t)) = τF(t) for any t ∈ T . Indeed, one can define a function ι function by

ι(j) = f ⇐⇒ s−1({j}) ⊆ τ−1
F ({f})
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The function is well-defined as s−1({j}) ⊆ τ−1
F ({f}), τ−1

F ({f ′}) implies by A = B

that τ−1
F ({f}) = τ−1

F ({f ′}) which implies f = f ′. In addition, by definition, f =

ι(s(t)) has the property that t ∈ s−1({s(t)}) ⊆ τ−1
F ({f}), hence τF(t) = f =

ι(s(t)). So this function satisfies τF(t) = ι(s(t)). Furthermore, the function is
injective. Indeed, if ι(j) = ι(j′), then s−1

i ({j}), s−1
i ({j′}) ⊆ τ−1

F ({f}) which implies
s−1
i ({j}) = s−1

i ({j′}) by A = B which in turn implies j = j′.

(g) Observe that
⋃
A∈AA =

⋃
B∈B = B are disjoint unions by definition. Hence A = B

follows upon proving the following two claims:

(a) For any A ∈ A resp. B ∈ B and tA, t′A ∈ A, tB, t′B ∈ B it holds that tA ∼ t′A
resp. tB ∼ t′B.

(b) If A,A′ ∈ A resp. B,B′ ∈ B and there are tA ∈ A, tA′ ∈ A′ resp. tB ∈ B,
tB′ ∈ B′ such that tA ∼ tA′ resp. tB ∼ tB′ , then A = A′, B = B′.

These two claims imply that A and B are both the collection of equivalence classes
of ∼ and hence A = B.

We first prove item (a). Let s(tA) = s(t′A). Choose any t−i ∈ T n−1. Then

f(tA, t−i) = g(si(tA), s−i(t−i))

= g(si(t
′
A), s−i(t−i))

= f(t′A, t−i),

As t−i ∈ T n−1 was arbitrary, tA ∼ t′A. Now assume that τF(tB) = τF(t′B). Then let
t−i ∈ T n−1. It follows that

f(tB, t−i) = g(si(tB), s−i(t−i))

= f ′(τF(tB), τF(t−i))

= f ′(τF(t′B), τF(t−i))

= g(si(t
′
B), s−i(t−i))

= f(t′B, t−i).

As t−i ∈ T n−1 was arbitrary, tB ∼ t′B. This proves item (a).

We proceed with item (b). Consider first A. Let A,A′ ∈ A, tA ∈ A, tA′ ∈ A′,
tA ∼ tA′ . Let s(tA) = m and s(tA′) = m′. Then

g(m, s−i(t−i)) = f(tA, t−i) = f(tA′ , t−i) = g(m′, s−i(t−i))
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By surjectivity of s : T →M, it holds for any m−i ∈Mn−1,

g(m,m−i) = g(m′,m−i),

Hence, by non-wastefulness m = m′, which implies A = A′.

Finally, consider B. Let t̃B̃, t̃B̃′ ∈ B, t̃B̃ ∼ t̃B̃′ and assume B̃ 6= B̃′. Note in
particular, that this implies by item (a) that B̃, B̃′ lie one equivalence class with
respect to ∼. As the equivalence classes w.r.t ∼ are connected in T by item (e),
there must be sets B,B′ ∈ B and tB ∈ B, tB′ ∈ B′, tB ∼ tB′ such that τF(tB) = x

and τ(tB′) = y and x, y are adjacent in F . By Lemma 4 and the surjectivity part
of property A, there is t−i such that

f(t, t−i) 6= f(t′, t−i),

contradicting tB ∼ tB′ . Hence, B = B′.

(h) Finally, let ι : M→ F ⊆ K be a bijection such that ι(s(t)) = τF(t) for any t ∈ T .
By surjectivity of s, there are ti ∈ T such that s(ti) = mi. Then

g(m1,m2, . . . ,mn) = g(s(t1), s(t2), . . . , s(tn))

= f ′(τF (t1), τF(t2), . . . , τF(tn))

= f ′(ι(s(t1)), ι(s(t2)), . . . , ι(s(tn)))

= f ′(ι(m1), ι(m2), . . . , ι(mn))

This shows that g is an embedded generalised median voting scheme.

Proposition 7 (Characterisation of strategyproof anonymous mechanisms for non-in-
terval ranges). Let T be set of single-peaked preferences. Let f : T n → K be a social
choice function. Then, f is strategy-proof and anonymous if and only if there there are
α1, α2, . . . , αn−1 such that for

f ′ : range f → range f, f ′(t1, t2, . . . , tn) = med{t1, t2, . . . , tn, α1, α2, . . . , αn−1} (7)

it holds that

f(t1, t2, . . . , tn) = f ′(τrange f (t1), τrange f (t2), . . . , τrange f (tn)).
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Proof of Proposition 7. Let f : T n → K be a strategy-proof and anomymous mechanism.
We know by the proof of Theorem 9 item (b) that there is a function f̃ : T nrange f → range f

that is strategyproof and anonymous by the proof of Theorem 9 item (c) and such that

f(t1, t2, . . . , tn) = f̃(p(t1), p(t2), . . . , p(tn)),

where p : T � TA is the projection of preference types onto the set TA = {t|A×A| t ∈ T }.
From the proof of Lemma 2, we know that Trange f is the set of single-peaked preferences on
range f . Note in particular, as f̃ is surjective, and, by definition, it has an interval range
in range f . Hence, by Weymark 2011, Theorem 4, this function is an (n + 1)-parameter
generalised median voting rule. It is surjective by definition, hence a generalised median
voting rule by Lemma 1. Hence, there is a function f ′ of the form (7) such that

f(t1, t2, . . . , tn) = f̃(p(t1), p(t2), . . . , p(tn))

= f ′(τrange f (p(t1)), τrange f (p(t2)), . . . , τrange f (p(tn)))

= f ′(τrange f (t1), τrange f (t2), . . . , τrange f (tn)).

On the other hand, let f(t1, t2, . . . , tn) = f ′(τrange f (t1), τrange f (t2), . . . , τrange f (tn)) for a
function f ′ of form (7). Anonymity of this rule is clear. For strategy-proofness, note that
f is tops-only and hence only depends on the preferences on range f . Hence, there is a
function f̃ : T nrange f → range f such that

f(t1, t2, . . . , tn) = f̃(p(t1), p(t2), . . . , p(tn)) = f ′(τrange f (t1), τrange f (t2), . . . , τrange f (tn)).

(17)
f̃ is surjective and its range hence an interval of range f . Hence, by Weymark 2011,
Theorem 5, this function is strategyproof. This implies by (17) that f must also be
strategy-proof.

Proofs for Section 5

Proposition 8 (Linear and quadratic preferences domains are RST). (a) The quadra-
tic domain is an RST domain.

(b) The linear preference domain is an RST domain if and only if (ux)x∈[0,1] are the
sub-differentials of a convex function.

Before we come to the proof of Proposition 8, we formalise the way in which we resolve
indifferences. Let • ∈ {quad., lin.}. Define T := [0, 1] × {0, 1} resp. and K := [0, 1].
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Define for (t, s) ∈ T the preference relation �(t,s)
• by

k ≺(t,s)
• k′ ⇐⇒ uk•(t) < uk

′

• (t)

∨
[
uk•(t) = uk

′

• (t) ∧ ((k < k′ ∧ s = 1) ∨ (k > k′ ∧ s = 0))
]
.

In other words, this is the lexicographic order induced by the quasiorder given by the
utility function ux•(t) and the order on {0, 1} given by 0 < 1. This clearly yields a
preference relation. Furthermore, define the total order < on T by

(xi, si) < (x′i, s
′
i) ⇐⇒ xi < x′i ∨ (xi = x′i ∧ si < s′i)

which is the lexicographic order on the product [0, 1]× {0, 1}.

Proof of Proposition 8. (a) We first consider the quadratic environment. The domain
of preferences is regular, as for any x ∈ K, τK((x, 0)) = x, compare Figure 6a (on
these images, we do not show the indifference-resolving variables s ∈ {0, 1}). For
the single-crossing property, let k < k′ ∈ K and (t, s) < (t′, s′) ∈ T , compare
Figure 6c. Let k ≺(t,s) k′. There are two cases. We suppress the subscript quad. in
the following calculations for ease of notation.
First, let uk(t) < uk

′
(t). This is equivalent to −(k− t)2 < −(k′− t)2 which is in turn

equivalent to k′2 − k2 < 2y(k′ − k) by basic algebra. But as k′ − k > 0 and t′ > t,
one also has k′2 − k2 < 2y′(k′ − k), which is equivalent to uk(t′) < uk

′
(t′). Hence,

k ≺t′,s′ k′.
Second, let uk(t) = uk

′
(t). It the must be that s = 1. Then we have t′ > t.

uk(t) = uk
′
(t) implies by algebra k′2−k2 = 2t(k′−k) < 2t′(k′−k). Re-substituting,

uk(t′) < uk
′
(t′) and hence k ≺t′,s′ k′.

Third, the domain is top-connected, compare Figure 6e: Let x1 < x2 < x3 < x4 be
adjacent in a finite set A ⊆ K. Then one finds that for t = x2+x3

2
, τA((t, 0)) = x2

and τA\{x2}((t, 0)) = x3.15 The converse holds for (t, 1).

(b) We first show that linear preference are single-crossing and tops-connected. For
single-crossingness, very similar calculations as in the quadratic case show the result.
For tops-connectedness, let A ⊆ K and x1 < x2 < x3 < x4 ∈ A adjacent, compare
Figure 6f. In the following, we suppress the subscript lin. Consider type t :=

15This also holds without the way in which we resolved indifferences: τA((t− ε, 0)) = x and τA\{x}((t−
ε, 0)) = y, whenever ε < x2+x3

2 − x3+x1

2 = x2−x1

2 > 0. In Figure 6e t− ε > t′.
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− b(x3)−b(x2)
a(x3)−a(x2)

, the intersection of ux3 and ux2 . It holds as in the quadratic case that
τA((t, 0)) = x2 and τA\{x2}((t, 0)) = x3 The converse holds for (t, 1).16

We finally show that regularity of the linear preference domain is equivalent to ux

being the sub-differentials of a convex function. For sufficiency, define the function

h : T → R+, t 7→ max
x∈K

ux(t).

This is maximum of affine functions, hence convex. By regularity, for any x there
must be t such that h(t) = ux(t). Hence, the functions touch They do not intersect
by definition of h. Hence, all the ux must be sub-differentials of h, compare Boyd
and Vandenberghe 2004, (3.8), (6.20).
Conversely, let ux(t) be the sub-differentials of a convex function. Then by definition
of sub-differentials, maxx∈K u

x(t) = h(t) and ux(t) = h(t) for some x ∈ K. Note
that by the requirement that a is strictly decreasing and b is strictly decreasing,
there are at most two such x. Call them x1 < x2. But then (t, 0) and (t, 1) satisfy
τK((t, 0)) = x1, τK((t, 1)) = x2. Hence, the domain is regular.

Corollary 10 (Anonymous version of Achuthankutty and Roy 2018, Corollary 6.2).
Assume that T is an RST domain. Then for any finite A ⊆ K, a social choice function
T nA → A is strategy-proof, surjective and anonymous if and only if it is an generalised
median voting rule on TA.

Proof of Corollary 10. Achuthankutty and Roy 2018, Corollary 6.2 says that on an RST
domain, a strategy-proof, unanimous social choice function is a min-max rule with the
additional property that a∅ = k and a{1,2,...,n} = k (we highlight the non-standard
terminology—the authors call these just min-max rules). By Proposition 11 and the
construction therein, this means that a strategy-proof, unanimous social choice function
is an (n+ 1)-parameter generalised median voting rule with the additional property that
the largest and smallest phantom ballot lie on k resp. k. By the construction in Lemma 1
such social choice functions are exactly generalised median voting schemes.

16We note that also without our resolution of indifferences, tops-connectedness can be proved. By the
monotonicity assumptions on a and b, it is not too hard to show that for any x1 < x2 < x3 ∈ K, it
holds that a(x3)−a(x1)

b(x1)−b(x3)
< a(x3)−a(x2)

b(x2)−b(x3)
, that is, the type where ux1 with ux3 intersect is strictly smaller

than the intersection type of ux2 with ux3 . In this case, (t̃, 0) with t̃ ∈ (t′, t), where t′ is the intersection
of ux1 with ux3 has the property that τA((t̃, 0)) = x3, τA\{x3}((t̃, 0)) = x2, compare Figure 6f. Similar
conditions hold for the converse.
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Additional Proofs

Corollary 3 (Range of first-best mechanisms). |range gfirst-best| ≥ (k − 1)n+ 1 and this
bound is tight.

Proof of Corollary 3. Let f1 < f2 < · · · < fk be the sorted range of f ↑ and let M =

{mi}ki=1 such that f ↑(mi) = fi, i = 1, 2, . . . , n. Consider the following elements ofMn:

mi,j = (mi,mi, . . . ,mi︸ ︷︷ ︸
j times

,mi+1,mi+1, . . . ,mi+1︸ ︷︷ ︸
n− j times

)

For all choices (i, j) such that i = 0, 2, . . . , n−1 and j = 1, 2, . . . , k−1 and (i, j) = (n, k−1),
all

gfirst-best(mij)

are distinct. Note that these are n(k − 1) + 1 different indices. To prove this claim, let
(i, j) 6= (i′, j′) be two such tuples of indices. There are two cases.

(a) Case j 6= j′. Without loss, let j > j′. Then gfirst-best(mi′j′) ∈ [fj′ , fj′+1) and
gfirst-best(mij) ∈ [fj, fj+1) if j 6= k − 1 and gfirst-best(mij) ∈ [fj, fj+1] if j = k. In any
case, these are disjoint intervals and gfirst-best(mij) 6= gfirst-best(mi′j′)

(b) Case j = j, i 6= i′. Without loss, let i > i′. Then by definition of mij

gfirst-best(mij)− gfirst-best(mi′j′) = (j − j′)fi+1 − (j − j′)fi = (j − j′)(fi+1 − fi) > 0.

Hence, in particular gfirst-best(mij) 6= gfirst-best(mi′j′).

This bound is e.g. attained for the uniform distribution on the unit interval. The uniform
quantiser (f in the proof of Proposition 2) is the unique optimal quantiser in this case
(cf. Bergemann, Shen, Xu, and E. M. Yeh 2011, (5) and Example 1). Tedious but
straightforward computation shows that in this case gfirst-best(mij) for the above choices
of indices exhausts all of the range of gfirst-best.

Proposition 6 (Welfare comparison for second-best mechanism). Assume quadratic pref-
erences and n = 2. There is a distribution F such that the following holds:

Let g be any unanimous, anonymous, strategy-proof mechanism g in a model without
communication restriction, i.e. a generalised median voting rule, and let (gk)k∈N be any
sequence of embedded generalised median voting rules gk : Mn → K with |M| = k. Then

W (F, g)−W (F, gk) ∈ Ω(k−1).
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where Ω is the Landau symbol for at most as fast convergence.

Proof of Proposition 6. We choose F to be the uniform distribution on the unit square
[0, 1]2. First note that as in (10), we can decompose both g and gk’s linearly into

−W (F, g) =
n− 1

n
σ2 +

1

n
E[(g(t1, t2)− t)2]

−W (F, gk) =
n− 1

n
σ2 +

1

n
E[(gk(t1, t2)− t)2]

Denote g’s phantom ballot by α1 and gk’s phantom ballot by αk1. To prove the asymptotic
bound, we must lower bound W (F, g)−W (F, gk), which is upon inserting definitions

1

2
E

[(
med{ι(s(t1)), ι(s(t2)), αk1} −

t1 + t2
2

)2
]
− E

[(
med{t1, t2, α1} −

t1 + t2
2

)2
]

= E
[
(med{t1, t2, α1} −med{ι(s(t1)), ι(s(t2)), α1})

t1 + t2
2

]
+

1

2
E
[
med{ι(s(t1)), ι(s(t2)), α1}2 −med{t1, t2, α1}2

]
. (18)

Note that we can assume αk1, α1 ≤ 1
2
or αk1, α1 ≥ 1

2
as for the uniform distribution, the

generalised median rules with phantom ballots α1 and 1− α1 yield the same welfare.

As the integrand in (18) is non-negative, to prove a lower bound, we may restrict (t1, t2

to a subset of [0, 1]2. Restrict the values of the random variables (t1, t2) to the square
1
2
≤ t1 ≤ 3

4
, 7

8
≤ t2 ≤ 1 if α1, α

k
1 ≤ 1

2
resp. 1

4
≤ t1 ≤ 1

2
, 0 ≤ t2 ≤ 1

8
if α1, α

k
1 ≥ 1

2
. We

treat exemplary the further case. The latter case can be shown similarly. Let gk have
embedding ι and let x0 ≤ 1

2
< x1 ≤ x2 ≤ · · · ≤ x`−1 <

3
4
≤ x` be the larger part of the

range of ι. As welfare of gk only increases if more messages are allowed, i.e. if the range
of ι is larger, we can also assume that there is x0 = 1

2
, x` = 3

4
∈ range ι. We restrict t1

further to the set

t1 ∈
`−1⋃
i=0

[
xi,

xi + xi+1

2

)
, (19)

where x`+1 = 1. In other words, we require ti > ι(s(t1)), i = 1, 2. For ease of notation,
we do not write the indicator functions of the set we restricted (t1, t2) to. (18) simplifies
to

Et1,t2
[
(t1 − ι(s(t1)))

t1 + t2
2

]
+

1

2
Et1,t2 [ι(s(t1))2 − t21]

By basic algebra,

Et1,t2
[
(t1 − ι(s(t1)))

t1 + t2
2

]
+

1

2
Et1,t2 [ι(s(t1))2 − t21]
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= 2−1Et1,t2 [(t1 − ι(s(t1)))(t1 + t2 − (t1 + ι(s(t1)))]

= 2−1Et1,t2 [(t1 − ι(s(t1)))(t2 − ι(s(t1))]

As 1
2
≤ t1 ≤ 3

4
, 7

8
≤ t2 ≤ 1 and (19), t2 − ι(s(t1)) ≥ t2 − t1 ≥ 1

8
, hence

2−1Et1,t2 [(t1 − ι(s(t1)))(t2 − ι(s(t1))] ≥ 2−4Et1,t2 [t1 − ι(s(t1))]

= 2−7Et1 [t1 − ι(s(t1))],

where the latter equation is integrating out t2, knowing, it takes values in a set of measure
1
8
. Using the law of total probability, P[ι(s(t1)) = xi] = xi+1+xi

2
− xi = xi+1−xi

2
and

Et1 [t1 − ι(s(t1))|ι(s(t1)) = xi] = 1
2
(xi+1+xi

2
− xi) = xi+1−xi

4
,

2−7Et1 [t1 − ι(s(t1))] = 2−7

`−1∑
i=0

Et1 [t1 − ι(s(t1))|ι(s(t1)) = xi]P[ι(s(t1)) = xi]

= 2−7

`−1∑
i=0

(xi+1 − xi)2

8

= 2−7`
`−1∑
i=0

1

`

(xi+1 − xi)2

8

where the latter is a one-multiplication. Now by Jensen’s inequality,

2−10`
`−1∑
i=0

1

`
(xi+1 − xi)2 ≥ 2−10`

(
1

`

`−1∑
i=0

xi+1 − xi

)2

≥ 2−10 `

`2
(x` − x0)2

≥ 2−14 1

`
≥ 2−14 1

k
.

Here, the second to last step is a telescopic sum.

Proposition. Let g be a welfare maximising unanimous, anonymous, strategy-proof mech-
anism g in a model without communication restriction, i.e. a generalised median voting
rule and F any distribution on [0, 1]. Then there is a sequence (gk)k∈N of embedded
generalised median voting rules gk : Mn → K with |M| = k such that

W (F, g)−W (F, gk) ∈ o(1).

Proof of . Let f be a welfare maximising generalised median voting rule and let the phan-
tom ballots be α1, α2, . . . , αn ∈ K and. Let gk be the embedded generalised median voting
rule with range ιk = { 1

k+1
, 2
k+1

, . . . , k
k+1
}.
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Fix t1, t2, . . . , tn ∈ T . Note that ιk(ti)→ ti. Furthermore, the function

ht1,t2,...,tn : [0, 1]n → [0, 1], (x1, x2, . . . , xn) 7→
n∑
i=1

(ti −med{x1, x2, . . . , xn, α1, α2, . . . , αn})2

is continuous. In particular,

ht1,t2,...,tn(ιk(t1), ιk(t2), . . . , ιk(tn))
k→∞−−−→ ht1,t2,...,tn(t1, t2, . . . , tn).

Furthermore, ht1,t2,...,tn(ιk(t1), ιk(t2), . . . , ιk(tn))− ht1,t2,...,tn(t1, t2, . . . , tn) is bounded by t.
Hence,

W (F, f)−W (F, gk) = E[ht1,t2,...,tn(ιk(t1), ιk(t2), . . . , ιk(tn))− ht1,t2,...,tn(t1, t2, . . . , tn)]→ 0,

by the dominated convergence theorem Billingsley 2008, Theorem 16.4.

Proposition 11 (Anonymous min-max is generalised median). Let T be regular. Then
a min-max social choice function is anonymous if and only if it is an (n + 1)-parameter
generalised median voting scheme.17

Proof of Proposition 11. By the definition of the median, an (n+1)-parameter generalised
median voting rule is anonymous. Conversly, let f be a min-max social choice function.
By regularity of the domain, there are t and t such that τK(t) = k and τK(t) = k. Then
let tS ∈ T n such that ti = t for i ∈ S and ti = t for i /∈ S. Then one checks that (compare
Weymark 2011, Proposition 2)

f(tS) = aS.

Note that for any S ′ with |S| there is π ∈ Sn such that π(S) = S ′. Denote by tπS the
vector that permutes the entries of tS by π. Then by anonymity

aS = g(tS) = g(tπS) = aS′

Hence, aS only depends on S and we can define b|S| = aS. Then

g(t) = min
S⊆{1,2,...,n}

max
i∈S
{τK(ti), b|S|} = med{τK(t1), τK(t2), . . . , τK(tn), b0, b1, . . . , bn}

where the last equality is by Weymark 2011, Proposition 7. Hence, g is a generalised
median voting rule.

Proposition (RST domains: property A). RST domains satisfy property A.

17For the definition of (n+ 1)-parameter generalised median voting rules see p. 31.
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Proof. Surjectivity follows immediately by the assumption of regularity and the obser-
vation that regularity of T implies regularity of TA for any A ⊆ T . For monotonicity,
let t < t′ ∈ T . Call k := τF(t), k′ := τF(t′) and assume k > k′ for contradiction. By
definition of τA, τA(t) �t τA(t′) and τF(t) �t′ τF(t′). Substituting, k �t k′ and k �t′ k′.
By single-crossing also k �t′ k′. This is a contradiction by antisymmetry of �t′ .

Proposition. Let F be the uniform distribution on [0, 1] and k = 2. Then the first-best
mechanism is symmetric BIC .

Proof. Clearly, the strategies for agents in the first-best are symmetric. By Bergemann,
Shen, Xu, and E. M. Yeh 2011, Example 1 we know that the first-best mechanism will be
(up to F -zero sets)

si(t) =

0 t ≤ 1
2

1 t > 1
2

g(m1,m2, . . . ,mn) =
1

4n

n∑
i=1

mi +
3

4n

(
n−

n∑
i=1

mi

)

=
1

4
+

1

2n

n∑
i=1

mi

Denote by EUt(m) the expected utility of an agent of type t that sends message t. Then
EUt(0) = E[−(1

4
+ 1

2n
X−t)2] and EUt(1) = E[−(1

4
+ 1

2n
+ 1

2n
X−t)2], whereX = Bin(n−1, 1

2
)

is binomially distributed with parameters n− 1 and 1
2
. Then, tedious but straightforward

computations shows

EUt(1)− EUt(0) = E
[
− 1

4n2
− 2

(
1

4
+

1

2n
X − t

)
1

2n

]
= − 1

4n2
− n

4n2
− 2E[X]

4n2
+

4nt

4n2

=
−1− n− (n− 1) + 4nt

4n2
≤ 0 ⇐⇒ t ≤ 1

2

which shows that the strategy si is expected utility maximising for any i = 1, 2, . . . , n and
hence (s1, s2, . . . , sn) forms a Bayesian equilibrium.

For n > 2 but still the uniform distribution, the proof is computationally more demanding.
We leave this for further work.

Lemma 3. If g : Mn → K is anonymous, non-wasteful and dominant strategy imple-
mentable by strategies s1, s2, . . . , sn : T →M, then si = si′ , 1 ≤ i, i′ ≤ n.
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Proof of Lemma 3. Assume si(t) 6= si′(t) for some t ∈ T and 1 ≤ i, i′ ≤ n. Then, as we
assume strict preference relations, it must be that

g(si(t),m−i) �t g(si′(t),m−i) = g(si′(t),m−i′) �t g(si(t),m−i′) = g(si(t),m−i),

where the first follows as si is a best response for player i, the second by anonymity, the
third, as si′ is a best response for player i′ and the final equality again by anonymity.
Hence, all must be equal. In particular for any mi, g(si(t),m−i) = g(si′(t),mi). By
non-wastefulness, si(t) = si′(t).

Lemma 4. Let A ⊆ K. Let x, y ∈ A be adjacent, i.e. there is no z ∈ A such that
x < z < y. Let α1, . . . , αn−1 ∈ [k, x] ∪ [y, k] and i = 1, 2, . . . , n. Then for h : A →
A, (a1, a2 . . . , an) 7→ med{a1, a2, . . . , an, α1, α2, . . . , αn} there is a−i ∈ An−1 such that

x = h(x, a−i) 6= h(y, a−i) = y.

Proof of Lemma 4. Let
α := |{i = 1, 2, . . . , n|αi ∈ [k, x]}|

and
α :=

∣∣{i = 1, 2, . . . , n|αi ∈ [y, k]}
∣∣ .

Then α+α = n−1. Define a−i such that |α− α| of the entries are equal to x (y) if α > α

(α ≤ α) and and of the rest, n−1−|α−α|
2

(note that this is an integer) are equal to x resp.
y. Note that the median does not change when replacing all αi, i ∈ {i = 1, 2, . . . , n|αi ∈
[k, x]} with x and all αi′ , i′ ∈ {i = 1, 2, . . . , n|αi ∈ [y, k]} with y. Then for the case α ≥ α

(the converse direction is similar)

h(x, a−i) = med{x, x, . . . , x︸ ︷︷ ︸
α

, y, . . . , y︸ ︷︷ ︸
α

, x, . . . , x︸ ︷︷ ︸
α−α

, x, . . . , x︸ ︷︷ ︸
n+1−|α−α|

2

, y, . . . , y︸ ︷︷ ︸
n+1−|α −α|

2

} = x

h(y, a−i) = med{y, x, . . . , x︸ ︷︷ ︸
α

, y, . . . , y︸ ︷︷ ︸
α

, x, . . . , x︸ ︷︷ ︸
α−α

, x, . . . , x︸ ︷︷ ︸
n+1−|α−α|

2

, y, . . . , y︸ ︷︷ ︸
n+1−|α −α|

2

} = y.
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