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Zusammenfassung

Wenn die Interaktion von Umgebung und strategisch handelnden Akteuren kom-
plex ist, ermöglicht ein Multi-Agent Influence Diagram (MAID) [KM03] eine nicht-
redundante, graphische Repräsentation des strategischen Spiels, die erlaubt, die
Struktur des Spiels für schnellere Gleichgewichtsberechnung zu nutzen. MAIDs sind
weiterhin gut geeignet, um zu identifizieren, ob Agenten Anreize haben, die Netz-
werkstruktur zu verändern bevor sie sich (strategisch) für ihre Aktionen entscheiden
[BEW; Eve+19].
Auf einer Menge von MAIDs mit beschränkter Kommunikation definieren wir eine

Äquivalenzrelation und geben einen Normalisierungsalgorithmus an. Dieser erlaubt
uns, Ergebnisse [BEW] etwas zu verallgemeinern. Weiterhin zeigen wir zwei Mög-
lichkeiten, die optimale Veränderung der Netzwerkstruktur zu berechnen: Eine erste
Reduktion auf eine Gleichgewichtsberechnung in einem MAID erlaubt einen endli-
chen Algorithmus in voller Allgemeinheit. Hingegen zeigen wir für eine Teilklasse von
MAIDs eine Darstellung als Lineares Programm, welches in Polynomialzeit lösbar
ist.

Abstract

When interaction of the environments and agents is highly structured and com-
plex, MAIDs [KM03] provide a framework for non-redundant, graphical game rep-
resentations that allows for accelerated equilibrium computation. MAIDs are well-
suited to identify incentives for agents to alter the information structure of games
before choosing their actions [BEW; Eve+19].
On a set of MAIDs of restricted communication, we define an equivalence relation

and present a normalising algorithm. This allows us to slightly generalise results in
[BEW]. Furthermore, we show two possibilities for the computation of the optimal
network alteration: Our reduction to a MAID equilibrium yields a finite algorithm.
For a subclass of MAIDs, we provide a Linear Programming formulation solvable
in polynomial time as an alternative.
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∼=X outcome equivalent w.r.t. X
¬ not
[n] {1, 2, . . . , n}
Θ Landau notation, bounded above

and below asymptotically
D set of all decision nodes
Dc set of commitment nodes
dc commitment node in liability MAID
dlj liability commitment node in liabil-

ity MAID
Di set of decision nodes of agent i
E edge set
p_ conditional probability mass func-

tion of concatenation strategy
pd conditional probability mass func-

tion of direct mechanism
U set of all utility nodes
Ui set of utility nodes of agent i
X set of nature nodes
Anc(A) nodes from which A is reachable
b̂ auxiliary parent for strategic rele-

vance
Ch(A) children of A
d marginal distribution of choice rule

for d ∈ D
d-conn(X,Y, Z) d-connection of X and Y

given evidence Z

∆(A) probability distributions on finite
set A

δij Kronecker’s delta
δ−(A) incoming edges to A
δ+(A) out-going edges from A

Desc(A) nodes reachable from A

δt Dirac distribution
dom(a) domain of random variable
d-sep (X,Y |Z) d-separation of X and Y

given evidence Z
E expected value
E(A,B) directed cut between A and B
a 99K b directed a-b-path
a→ b edge (a, b) ∈ E
a— b (a, b) ∈ E or (b, a) ∈ E
a b a-b-path in underlying undirected

graph
EUi expected utility of agent i
G[V ] induced subgraph on node set V
⊥⊥ stochastic independence
M generic influence graph
Me e-augmentation of influence graph

M
Pa(A) parents of A
pX probability mass function
R relevance graph of MAID
ũ utility function
UnifA uniform distribution on finite set A
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1 Introduction

Rational agents in a strategic situation try to choose their actions to get the most desir-
able outcome they can influence the situation to have. In many situations, however, an
institution should be able to be freed from these incentives agents face. For example, in
an auction, if an auctioneer with negligible interest for an auctioned good receives bids
below a previously announced reserve price, she would still want to sell it—if she could
not commit to a plan of action beforehand.

On the other hand, information from different sources and actions are intertwined in
complex ways, necessitating models that capture the structure of interactions. This
thesis aims to develop a theory of computing agent actions if they have the power to
commit themselves, and information structure is complex. To achieve this, we extend an
established model for Bayesian Game theory, MAIDs [KM03], to include decision rules
that allow for commitment.

Our extension of the graphical models to include commitment goes in three steps. First,
we present possibilities to pre-process representations of strategic interaction to allow for
faster computation and equilibrium checks.

Theorem (Main result 1). There is a quadratic-time algorithm that under the assumption
of Conjecture 1 is a canoniser for outcome equivalence on the set of centralised MAIDs
compatible with a fixed set of chance nodes.

We use the intuitive concept of outcome equivalence that treats MAIDs as equivalent
if any parametrisation of chance/nature node distributions leads to the same expected
utility for all agents. This approach is more general than the one typically taken in
the literature on complex system design studying the effect of specific network trans-
formation such as the deletion of irrelevant information links [Mil+08], the irrelevant
addition of nodes [BEW], and the value of information [How66] (which is zero if a link
addition is irrelevant). Our definition allows for the unified treatment of several of the
aforementioned questions. For example, if (and only if) the canonical form with respect
to outcome equivalence of two MAIDs differing in several added edges is the same, then
the addition is irrelevant (but see subsection 3.3).

The second and third contribution then relate to the main problem of computing actions
to whose decision rules agents can commit. We first give a reduction to the equilibrium
computation in MAIDs for which generic algorithms and approximations exist [MM96].

Theorem (Main result 2). We can finitely reduce MAID Equilibrium to MAID Com-
mitment Equilibrium.

Our transformation only works for a single agent who can commit. In fact, in many
modelling situations this is a reasonable assumption: When considering the interaction
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with potential buyers of one good, an auctioneer might abstract strategic interactions
with another auctioneer.

Furthermore, several agents with the power to commit introduce analytical pitfalls. We
formulate in the formalism of MAIDs an example from the economics literature illus-
trating this [Mye82]. Indeed, the example of four agents, two of whom can commit to
actions beforehand and choose non-cooperatively, does not permit any equilibrium.

Our final contribution shows that given restrictions on agent communication, the agent
decisions can be specifically chosen so that they allow for a linear program (LP) formu-
lation.

Theorem (Main result 3). Finding commitment equilibria in private values MAIDs can
be reduced to solving a LP.

This result is closely related to formulations of the revelation principle in mechanism
design (e.g. [Mye82; Mye86; SW17]) and automatic mechanism design [CS02]. Our
approach allows for the graphical representation of interactions and to use sparsity to
make representations more compact.

We give two applications of our theorems. First, we present additional sufficient proper-
ties of a MAID to not increase utility for agents to the ones in [BEW, Proposition 6].
Furthermore, we present a class of MAIDs that permit a polynomial-time solvable LP
representation.

The outline of the thesis is as follows: In section 2 we collect notation and give a back-
ground on causal graphs and influence diagrams, conditional independence resp. strategic
relevance and their connection to d-connectivity and s-reachability which will be used in
the rest of the text. In section 3 we give definitions and our normalising algorithm for
MAIDs. Sections 4 and 5 present our results on the reduction to MAIDs and LPs, re-
spectively. Finally, we present related literature in section 6 and conclude in section 7.

2 Background

This section gives definitions and reviews known properties of causal graphs and influence
diagrams. We start with notations and conventions on graphs, probability distributions
and canonical forms in subsection 2.1. Then, we introduce causal graphs in subsection 2.2
and Influence Diagrams (IDs) in subsection 2.3.

We assume prior knowledge of basic probability (conditional probability, marginals, ex-
pected value) and graph theory (paths, graph scanning, subgraphs). Prior knowledge in
game theory is helpful, but not necessary for this review nor for the rest of the text.
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2.1 Preliminaries

Naming Conventions All uppercase letters will be sets (e.g. U , D, A, Di, Ui, Dc,
Anc(V )). The lower-case letters i, j, k, l, n,m mean elements in a non-node set, all other
lower-case letters nodes in a graph. All graphs and diagrams will be in script style, e.g.
M, G. We will associate nodes in a graph with random variables. If a random variable
on domain1 D is associated to a node v, we write dom(v) := D and denote, depending on
context, the random variable or any element in dom(v) by v. Similarly, we denote for a
set of nodes that jointly have associated random variables V dom(V ) :=×v∈V dom(v).
For a fixed enumeration of all nodes of a graph and induced enumeration of a set of nodes
V = {v1, v2, . . . , vk} we denote by V , depending on context, either the random variable
(v1,v2, . . . ,vk) or any element of dom(V ) = dom(v1)× dom(v2)× · · · × dom(vk).

As notations, [n] := {1, 2, . . . , n}. For U ⊆ V , we denote by (U,UC), for a ∈ A, b ∈ B,
by (a, b) ∈ A×B the concatenation. δij is Kronecker’s delta.

Probability We assume that all random variables are random variables with respect
to one measure space (Ω,A, µ). We denote stochastic independence with respect to this
measure space by ⊥⊥. Let ∆(A) be the set of probability distributions on set A. For a
finite set A, UnifA is the uniform distribution A, δt is the Dirac distribution on A putting
probability 1 on t ∈ A. We denote (conditional) probability mass functions by a small p
with a subscript for the random variables and the conditioning, e.g. pX|Y (X|Y ). If the
random variables and the conditioning are clear from the context, we will suppress the
subscript.

Graphs All graphs are assumed loopless and simple. For a directed graph G = (V,E),
the corresponding undirected graph is (V, {{v, w}|(v, w) ∈ E or (w, v) ∈ E}. For a graph
G = (V,E) and V ′ ⊆ V we use the notation G[V ′] to denote the induced subgraph of
G on V ′. We call all nodes in a directed graph with zero in- resp. out-degree roots and
leaves.

We denote by δ−(A), δ+(A), respectively, the set of all incoming resp. out-going edges.
Furthermore, we denote by Pa(A), Ch(A), Anc(A) and Desc(A), respectively, the sets of
all parents, children, ancestors and descendants of node set A. For any of δ−, Pa, Ch, Anc
and Desc, we will omit braces if the argument is a singleton set, e.g. δ−(x) := δ−({x}).

For a fixed, implicit edge set E we introduce further notation. We denote a → b : ⇔
(a, b) ∈ E. Furthermore, if there is an edge between a and b in the underlying undirected
graph, we write a— b. Finally, we denote by a 99K b a directed path from a to b and by
a b a path in the corresponding undirected graph.

1We follow [KM03] in this non-standard nomenclature. In probabilistic terms, the domain should rather
be called „range“.
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Normal Forms Let ∼= be an equivalence relation on set A. Then a function f : A→ A
such that f(a) ∼= a for any a ∈ A and f(a) 6= f(b) → a 6∼= b for any a, b ∈ A is called
canoniser. A function that satisfies only f(a) ∼= a is called normaliser. The elements
of the range of a canoniser are called canonical forms, the elements of the range of a
normaliser normal forms.

2.2 Causal Graphs

Models with uncertainty and interacting entities in high generality are joint probability
distributions over a potentially large number of parameters. Indeed, in many settings,
even if exact functional relationships are known, measurement errors or variations from
outside introduce noise into a model and make point predictions impossible. Moreover,
probabilistic modelling allows for a better understanding of the underlying uncertainty.

A (finite) random variable is a (measurable) function from a measure space

X : (S,A, µ)→ dom(X).

We can represent it equivalently by its probability mass function pX : dom(X)→ [0, 1],
which for any element in dom(X) specifies the probability weight.

Unfortunately, probability distributions, even when represented via probability mass
functions, are highly parametrised. For example, a random variable on binary strings of
length 512 bits has a representation size of 22

512 real numbers. In fact, for a fixed num-
ber of states, the number of probability distributions for a growing number of variables
grows doubly exponentially. Therefore, to make computational treatment of probability
distributions feasible, a lower parametrisation is needed.

Fortunately, the interactions of variables in systems are often extremely sparse. For
example, one would assume that there is no relation between the performance in an exam
and the food one ate on the first day of lectures. Models that allow for the encoding of
sparsity, hence, are essential.

Temporal structure in the sense of a partial order of events is often present in strategic
interactions. For example, in a fault prediction scenario or a Q&A system, a question
order might underly the system. More generally random trees assume a total temporal
ordering of events and are powerful machine learning models [Bis06]. A causal graph is
a model that encodes probability distributions of sparse interaction in the presence of
a partial order of temporal events. In contrast to a random tree, it allows for simulta-
neous occurrence of events. In more mathematical terms, Bayes nets encode finite, not
necessarily exchangeable, relational data.

In addition to causal graphs, we introduce causal models. The difference will become
important later, when we formulate purely structural results that only use causal graph
structure and quantify over all possible causal models for a given causal graph.
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Definition (Causal graph, causal model). A causal graph is a directed acyclic graph
(DAG) G = (V,E). A causal model for G is a set of random variables {v}v∈V with
domains dom(v) such that their joint mass function factorises as

pV (V ) =
∏
v∈V

pv|Pa(v)|(v|Pa(v))

We call V a parametrisation of G. We will keep the domains of the random variables
implicit except where needed. Note that, following our convention, in the subscripts and
in the arguments, the same variables have different semantics: In the subscripts, these
are random variables, in the argument, they are elements of the domain.

Causal models allow for much lower parametrised models in contrast to general proba-
bility distributions, as they require, for each node, to save only a probability distribution
on its domain for each parent instantiation.

The definition of a causal model based on factorisation makes clear that it is a much more
economical representation of a probability distribution; the causal structure, i.e. the
structure of probabilistic dependence, however, is not clearly identifiable. Characterising
probabilistic independencies is crucial for two reasons.

First, knowing the independencies that a model encodes, it is easier to craft a model
given expert knowledge. In a medical setting, for example, a doctor might know that
some symptoms are likely to be independent of one another, whereas might be interde-
pendent.

Furthermore, the independencies of a model also give insights on model fit. Wrong
predicted independencies that contradict expert knowledge in the field of application are
a strong signal for misspecification

The following theorem characterises conditional independence of two variables a causal
graph

Theorem ([PD96, Theorem 2]). Let G = (V,E) be a causal graph. Then for X,Y, Z ⊆
V (G),

X ⊥⊥ Y |Z

for any parametrisation V if and only if

d-sep (X,Y |Z) .

The (purely graph-theoretical) predicate d-sep (X,Y |Z) of d-separation is defined as the
following: Whenever A B is a path in the corresponding undirected graph, there is an
adjacent triple u— v—w such that either

• u→ w ← w, which we call a v-structure, and no descendant of w is in Z.

• u— v—w is not a v-structure and v ∈ Z.

5
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Figure 1: Example of a causal model (cited in [KFB09] as due to Pearl). In this example, either a person
is alarmed (a) by an earthquake (e) or a burglary (b). Given that the person is alarmed, she
decides whether to make an emergency call (c). Conditional on the fact that there was an
emergency call, for some parametrisation, burglary and earthquake are dependent for there is
an active path (bold). The v-structure at a descends to evidence c.

We call the negation of d-separation d-connection, d-conn(X,Y, Z) := ¬d-sep (X,Y |Z).
d-connection is characterised by the existence of a path X Y that has evidence z ∈ Z
on the path only at v-structures and for which any v-structure descends to evidence.
Such paths are called active.

For an example of an application of the theorem, see Figure 1. The reader can find a
proof of this theorem in [KFB09, Section 3.3.2]. The literature uses the words soundness
and completeness for the sufficiency respectively necessity direction in the above theo-
rem. Completeness means that for sets of nodes that are d-connected there are in fact
parametrisations that make them stochastically dependent. Soundness is the property
that no nodes that are independent under any parametrisation are d-connected.

The purely graph theoretical criterion for independence allows for efficient solution of
independence queries. Indeed, d-separation from any fixed node set X is computable by
a modified graph scanning in linear time.

As with d-separation, results for IDs, which we introduce next, try to derive proper-
ties that hold for any parametrisation given only graphical properties. Soundness re-
sults (which say that a criterion is sufficient to show independence) are thus far more
widespread than completeness results (which show that the results obtained are best-
possible).

2.3 Influence Diagrams

Games are interactions of strategic entities (agents) that, based on information that they
are provided, make decisions (actions) to maximise their utility. Utility is assumed to
be a number which might depend on all other agents’ actions (hence there is a total
order on the outcomes for each agent). The goal in (non-cooperative) game theory is to
characterise properties of so-called equilibria in which an agent does not want to play
another action given that all other players stick to their (equilibrium) actions. For an
introduction to game theory, see [MWG95, chapter 7].
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Technically, a game consists of a finite set of agents [n], and for each agent i an action
set Di and a utility function

ui : X ×

(
×
i∈[n]

Di

)
→ R,

where X is a set of variables that are not agent actions. The goal for each agent is
to maximise his utility function ui, which depends on his and all other agent’s choices.
The joint maximisation of utility functions can be seen as an interlinked multi-criteria
optimisation problem. Intuitively, action choices are stable if any agent with his choice
of action di ∈ Di maximises ui given all other agent’s action choices dj ∈ Dj , j 6= i ∈ [n].
With such action choices, no single agent can get a better outcome when he does not
cooperate with other agents. Such action choices are called equilibriaÂăin game theory.

General games are, as probability distributions, highly parametrised. Often, the sets
of actions are several independent actions or even actions that depend on other agent’s
actions, making the set Di a large product space.

As for probability distributions, however, sparsity in games often occurs. For example,
many games consist of sequential moves by several players, often leading to situation in
which some players do not take an action anymore: In an incremental auction, as soon as
the announced price surpasses their willingness to pay, their actions are irrelevant. Other
games have identical but independent interactions by several players and high symmetry
properties, such as in voting scenarios.

IDs allow for low-parametrised causal models with a partial time order and have a graph-
ical representation of independence.

Definition ((Multi-Agent) influence graph). A DAG M = (V,E) where V partitions
as

V = X ∪
n⋃

i=1

Di ∪
n⋃

i=1

Ui

Ui, i ∈ [n] only consists of leaf nodes is called influence graph. We also write M =
(X,D,U,E), keeping the agent sets implicit and using the definitions D =

⋃
i∈[n]Di and

U =
⋃

i∈[n] Ui.

The three different node sets X, A and U encode chance, agent actions and utilities
and are typically visualised by different shapes: chance nodes as circles and, filled with
different greytones for different players, squares and diamonds for utility nodes. For an
example of an influence graph, see Figure 2. The names for the node types vary in the
literature: Action nodes are also called decision or choice nodes, chance nodes also nature
nodes. Before giving the formal definition of an ID/influence model, parametrisations
and equilibria, we describe more thoroughly each of the node types.
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First, conditional probability functions parametrise X the set of chance nodes—as in
causal models. They can encode any physical or even strategic system that the abstract
model treats as random.

The second set of nodes, action nodes Ai for each agent i, encodes the actions available
to an agent. For each action node, an agent makes a (potentially random) decision given
(only) realisations of the action node’s parents. The selection of a mapping of parent
realisation to an outcome is called a decision rule and can be identified with a conditional
probability distribution (cpd). We highlight that there need not be a total (temporal)
order of an agent’s nodes nor that agents remember past observations. This allows the
formalism to model settings where several independent entities act cooperatively in a
strategic environment.

The final set of nodes comes with the largest, despite standard in economics, assumption
on agent behavior: The utility nodes are parametrised with deterministic functions of
their parent realisations. Given a parametrisation for chance and utility nodes and deci-
sion by all agents, one computes an agent’s utility by summing over the expected values of
all utility nodes. This assumes both that the agents are expected utility maximisers and
that their utility function can be additively decomposed according to different aspects
that influence their utility. Both utility maximisation and additive independence have
been axiomatised for general preferences. See [MWG95, Chapter 1] for requirements
for expected utility maximisers, [KFB09, Proposition 22.4] for properties for additive
separable utility functions.

Definition. LetM = (X,A,U,E) be an influence graph. Define:

Parametrisation A parametrisation forM consists of

• dom(z) for z ∈ X ∪ Pa(X) ∪ Pa(U),

• For each Pa(X) ∈ dom(Pa(X)) a random variable X that is a parametrisa-
tion for the causal graph (X,E), and

• Utility functions ũ : dom(Pa(U)) → dom(u) ⊂ R for any u ∈ U . We can
identify ũ with a conditional probability mass function for random variable u,
pu|Pa(u)(u|Pa(u)) that only puts probability weight on one element of dom(u).

We call an influence graph together with a parametrisation an influence model or
influence diagram.

Communication Domain Specification Communication domain specifications con-
sists of domains dom(d) for any d ∈ D \ Pa(X) ∪ Pa(U).

Decision Rule Given a parametrisation and a communication domain specification, a
decision rule for d ∈ D a domain dom(d) together with a mapping

d : dom(Pa(D))→ ∆(dom(d)).

8



We can identify a decision rule with a conditional probability mass function

pd|Pa(d)(d|Pa(d)).

Expected Utility Given a communication domain specification and decision rules Di,
i ∈ [n] for all agents, we can identify (using the identifications with conditional
probability mass functions) X ∪D∪U with a parametrisation of the causal graph
(X ∪D ∪U,E). The dependence of this distribution (and its marginals) we denote
by a subscript D. Then define the expected utility of agent i as

EUi[(Di,D \Di)] :=
∑
u∈Ui

E[u(Di,D\Di)].

We use here the notation (Di,D \Di) for D ∪ (D \Di).

Equilibrium A communication domain specification (dom(d))d∈D\Pa(X)∪Pa(U) together
with decision rules D for all agents is called an equilibrium if for any agent i ∈ [n]

EUi[Di,D \Di] ≥ EUi[D
′
i,D \Di] (1)

for any decision rules D′i on the same communication domains. In this case, Di

is a best response to D \Di. We also say that it maximises expected utility given
D \Di.

Attainable Utility Vector For a given parametrisation the vectors (EUi(D))i∈[n] for
an equilibrium D (and some communication domain specification) are called at-
tainable utility vectors.

Let us give an example of the above definitions. We consider the influence graph de-
picted in Figure 2. The parametrisation we give can be interpreted as a and b using a
coordinating signal, s ∈ {0, 1} to coordinate their (binary) choice. Each prefers one of
the two, but both only get utility if they choose the same value. A full parametrisation
for this MAID would consist of

dom(s) := {0, 1} dom(ua) := dom(ub) := {0, 1}
dom(a) := {0, 1} dom(b) := {0, 1}

ps(0) :=
1

2
ps(1) :=

1

2
ũa(a, b) := δab ũb(a, b) := δab.

The first line defines domains for the utility nodes, the second for the action nodes
must be fixed to ensure that their domains are compatible with the utility functions’
signature. In this example, one does not have to specify communication domains, as
X ∪ U ∪ Pa(X) ∪ Pa(X) ⊇ D. An example of an equilibrium is given by the decision

9
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a b

ua ub

Figure 2: An example of an influence diagram, adapted from [Mil+08, p.2].

rules that copy the value of s:

pa|s(1|0) = 0 pa|s(1|1) = 1 pa|s(0|1) = 0 pa|s(0|0) = 1

pb|s(1|0) = 0 pb|s(1|1) = 1 pb|s(0|1) = 0 pb|s(0|1) = 1

This equilibrium gives each agent (we do the calculation for ua, which we assume belongs
to agent 1, as both agents are symmetric):

EUi[(a, b)] =
∑

s,a,b,ua∈{0,1}

p(s,a,b,ua)ua

= ps(1)pa|s(1|1)pb|s(1|1)pua|a,b(1|1, 1) · 1
+ ps(0)pa|s(0|0)pb|s(0|0)pua|a,b(1|0, 0) · 1

=
1

2
+

1

2
= 1

It is not too hard to show that the described decision rules are an equilibrium and that
the set of attainable utility vectors for this parametrisation is {(12 ,

1
2), (1, 1)}.

The example already shows that in MAIDs complicated structures of coordination might
emerge due to shared observations of chance variables. The question of finding an equi-
librium for a parametrised influence graph is a formidable one.

MAID Commitment Equilibrium

Input A parametrised MAIDM
represented by lists of real numbers (ũ(Pa(u)))Pa(u)∈dom(Pa(u)), u ∈ U ,
and (p(x|Pa(x)))Pa(x)∈dom(Pa(x))

x∈dom(x)

, x ∈ X

(domains for U ∪X ∪ Pa(U) ∪ Pa(X) are implicitly represented in the
lists)

Output Decision rules D
represented by lists of real numbers (p(d|Pa(d)))Pa(d)∈dom(Pa(d))

d∈dom(d)

, d ∈ D

(domains for D \ (U ∪X ∪ Pa(U) ∪ Pa(X)) implicitly represented in
the lists)

10



Goal Choose the decision rules such that they form an equilibrium.

If an upper bound on the cardinality of dom(D \ (U ∪X ∪Pa(U)∪Pa(X))) can be
given, finite-time exact and polynomial time approximation schemes can be applied to
this problem (see e.g. [MCZ12]. In higher generality, it is not clear how to choose these
domains. We will come back to this subject in section 5.

Although no worst-case bound can be obtained, the computation of equilibria can be
sped up considerably by making the network sparser if some dependencies are irrelevant
or by dividing the problem into manageable sub-parts.

The first approach is best described by criteria for edge deletion.

Proposition ([Mil+08]). Let M = (X,A,U,E) be an influence graph and {v, w} ∈ E,
w ∈ D. If

d-sep (v,Desc(v) ∩ Ui|Pa(w) ∪ {w}) ,

then for any parametrisation, any attainable expected utility vector inM = (X,A,U,E \
{e}) is attainable inM.

This result is in contrast to the d-separation criterion only a sufficient criterion. It shows
that some of the information is ignorable but not that deleting an edge that does not
satisfy the criterion does change the set of attainable utility vectors. Section 3 will work
towards an if-and-only-if that was begun for single-agent single-action IDs in [Eve+19] by
providing further normalisation for a fundamental study of canonical forms of MAIDs.

Another speedup of equilibrium computation can be obtained by divide-and-conquer and
using a notion of strategic relevance. Using this structure, we can decompose a game into
smaller, independent sub-games.

Definition. LetM be an influence graph and a, b ∈ D. Then a strategically relies on b
if the following holds:

There are two sets of decision rules (d)d∈D and (d′)d∈D such that

d = d′, d 6= b

and the decision rule a associated to a that maximises expected utility given d \ {b}.
Given this, there is no a′ such that

p(a|Pa(a)) = p(a′|Pa(a))

for any Pa(a) such that p(Pa(a)) > 0 that is utility-maximising given (d′)d∈D\{a}.

Less technically, there are strategies for all other decision nodes such that a change only
at b will imply that a best response a loses the status of being a best response.

11
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Figure 3: Spurious strategic relevance for zero-probability parent instantiations.

The last part in the definition is to rule out spurious dependencies, compare Figure 3. We
take the parametrisation dom(ua) = dom(ub) = dom(a) = dom(b) = {0, 1}, ũa(a, b) =
Ua(a, b) = δab.

Independent of the decision rule a, a best response is p(b|a) = δab = δab i.e. that b is
chosen to match a. Given p(a) = δa1, i.e. a is 1 with certainty, p(b|a) = δb0 is also a
best response but no best response to any other choice of decision rule a, which is not
too hard to see. This does not imply strategic reliance of b on a as

δb0 6= δab

holds only for a = 1, but p(a) = 0 if p(a) = δa1. Similar to d-connectedness and
the characterisation of independence for causal graphs, [KM03] showed an analogous
necessary and sufficient graphical criterion.

Theorem. LetM = (X,D,U,E) be an influence graph. There is a parametrisation for
M such that a ∈ Di strategically relies on b ∈ D if b is s-reachable from a, i.e.: If one
adds an auxiliary parent b̂ to b, then by treating the directed graph M as causal graph

d-conn(b̂, Ui, a ∪ Pa(a))).

In Figure 3, b̂ → b → ua is an active path certifying that a strategically relies on b; for
the other direction, the only path is blocked by b. For more examples for s-connectivity,
we refer the reader to [KM03, p.206 bottom]. s-reachability defines a relation that we can
interpret as a directed graph, the so-called relevance graph R(M). Intuitively, decision
rules in strongly connected components can be chosen independently. This intuition is
confirmed: One can decompose equilibrium computation in a divide-and-conquer manner
to speed up equilibrium computation.

Theorem ([KM03, Theorem 6.2]). Let M be a MAID where each agent has perfect
recall2. Then an algorithm that computes equilibria for strongly connected components of
the relevance graph separately and in reverse topological order in the component graph of
R(M) outputs an equilibrium for the whole MAID when all not-yet-computed decision
rules have arbitrary full-support mass functions.

2An agent i is said to have perfect recall if there is a total order d1, d2, . . . , dk on Di such that Pa(di) ⊆
Pa(di+1), i.e. an agent recalls all previous actions according to some temporal order.

12



This theorem makes the size and number of strongly connected components of the rel-
evance graph an important factor for speed-ups of equilibrium computations. We will
return to this in section 4.

After this introduction to causal graphs and influence diagrams, we start in the next
section by studying equivalence of MAIDs. After introducing our notion of equivalence,
we slightly generalise a results from [BEW].

3 Normalisation of Multi-Agent Influence Diagrams

This section introduces a unified framework for the comparison of MAIDs. Indeed,
deviating from prior literature, our approach does not analyse specific operations that
preserve attainable utility vectors but aim for canonical representations given an equiv-
alence relation. The outline of the section is as follows: We start with a definition
of equivalence of MAIDs. Then, we present a normalisation algorithm on centralised
MAIDs. We conclude this section with a slight generalisation of results in [BEW] and a
discussion of the limits of the approach.

3.1 Outcome Equivalence

To define an equivalence of MAIDs on firm ground, we first need the term of a centralised,
compatible MAID.

Definition (Centralised, compatible MAIDs). Let M = (X,D,U,E) be an influence
graph. M is called centralised if

E(Di, Dj) = ∅

for any i, j ∈ [n]. It is called compatible with a DAG G together with in-degrees (dv)v∈G
if G is a subgraph of (X ∪D ∪ U,E), |PaM(v)| = dv for any v ∈ V (G) and X = V (G).

Denote A(G,(dv)v∈V (G)) the set centralised MAIDs compatible with (G, (dv)v∈V (G)) such
that X = V (G) and there is exactly one player 0 that does not possess any utility nodes.

The notion of compatibility is needed to ensure that quantifying over all parametrisations
is well-defined, as these also define domains for parents of chance and utility nodes. The
requirement of centrality and the existence of an indifferent agent will become clearer in
the algorithm.

Definition (Outcome equivalence). We call M1,M2 ∈ AX outcome equivalent if for
any parametrisation of X the set of attainable expected utility vectors is the same in M1

and M2. In this case we write M1
∼=X M2.

13



Evidently, ∼=X defines an equivalence relation and hence canoniser exist. We conjecture
that the algorithm given next is a canoniser for this equivalence relation. We highlight
that this algorithm is purely graph-theoretical and does not use any information on
parametrisation.

3.2 Normalisation Algorithm

Algorithm 1: Normalisation forM-centralised MAIDs
Data: MAIDM
Result: Equivalent MAIDM
Let v1, v2, . . . , vk be a topological order of D

1 for i = 1 to k do //Information Down
if Ch(vi) ⊆ D and Pa(vi) ∩X 6= 0 then

E ←− E \ ((Pa(vi) ∩X)× {vi}) ∪ ((Pa(vi) ∩X)× Ch(vi))

2 for i = k downto 1 do //Coordination Up
if Ch(vi) ⊆ D and Pa(vi) 6= ∅ then

E ←− E \ (δ−(vi) ∪ δ+(vi)) ∪ (Pa(vi)× Ch(vi))
D ←− D \ {vi}

3 Find a fixed point of
E ←− E \ {(v, w) ∈ δ−(D)|d-sep (v, U ∩Desc(w)|{w} ∪ Pa(w))}

4 Let C1, C2, . . . , Cl be connected components in
(D,

⋃
u∈U

(
Anc(u)

2

)
∩
⋃

d∈D:Pa(d)=∅,Ch(d)⊆D
(
Ch(d)

2

)
)

E ←− E \ (
⋃

d∈D:Pa(d)=∅ δ
+(d))

V ←− V \ {d ∈ D|Pa(d) = ∅} ∩ {c1, c2, . . . , cl}
E ←− E ∪ (

⋃
i∈[l]{ci} × Ci)

5 for i ∈ [n] do
for v ∈ Di do

if d-sep(v, Ui) then
Di ←− Di \ {v}
D0 ←− D0 ∪ {v}

returnM

Theorem 1 (MAID normaliser). Algorithm 1 is a quadratic-time algorithm that is an
equivalence transformation for ∼=X . Under the assumption that Conjecture 1 holds, it is
a canoniser for (AX ,∼=X).

We comment on the lines of the algorithm. The first two lines use that the communication
domains are part of an equilibrium specification and can hence be chosen. In this way,
much of the communication of action nodes of the same agent can be simplified. Line 1
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moves information edges downstream to lower nodes as long as these do not have chance
or utility nodes as children. Then, in line 2, all nodes all whose parents and children are
decision nodes of the same agent are deleted and their parents are connected to their
children.

This graph already has the property that the decision nodes of agents are partitioned
into two classes of nodes: Those that have zero in-degree (which we call coordination
devices) and those that have at least one child in X (which we call input nodes).

Line 3 deletes irrelevant edges in the graph. Line 4 determines whether, for any two
children, the MAID putting them as children of different coordination devices gives an
equivalent graph and if so, splits the coordination device. Finally, line 5 assigns all nodes
that are irrelevant to the agent controlling them to agent 0, which is assumed to have
constant utility independent of chance and decision rule instantiations.

The following two results, the second of which we are unfortunately unable to prove,
would imply that algorithm 1 is a canoniser for outcome equivalence.

Lemma 1 (Equivalence). Each of lines 1 to 5 in algorithm 1 is an equivalence transfor-
mation of M w.r.t. ∼=X .

Conjecture 1 (Uniqueness). For all outputs of algorithm 1, graph equality and outcome
equivalence coincide.

Establishing Conjecture 1 is challenging as completeness results for MAIDs concerning
the irrelevance of edges are not known. Such a result, however, is promised for a follow-up
paper of [Eve+19].

Proof of Theorem 1. Correctness follows from Lemma 1 and Conjecture 1. For the run-
time note that all lines except for line 3 and line 4 can easily be implemented in quadratic
time. For the first, use the algorithm in [KM03] with the modification that each utility
nodes replaced by n clones of utility nodes for each agent except agent 0. For the
second, observe that the graph construction takes quadratic time (and has size linear
in the original graph). Indeed, the first part of the node set can be constructed by at
most |V (M)| passes of graph scanning, the latter part is of linear complexity. Finding
the connected components is linear. Therefore, this line has a quadratic complexity as
well.

Proof of Lemma 1. For the first two lines of the algorithm, for any iteration in the re-
spective for loop, we will give an alternative definition of communication domains and
decision rules that induce the same distributions on decision nodes. For this, we will
denote by a prime that a random variable has been transformed, e.g. d is transformed
to d′.

Define the communication domain of the transformed variable as

dom(d′) := dom(d)dom(Pa(d)∩X)
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and let

p(d′|Pa(d)∩D) = (p(d|Pa(d)∩X,Pa(d)∩D))Pa(d)∩X∈dom(Pa(d)∩X).

Hence d′ outputs a random variable for each potential realisation Pa(d)∩X given the
distribution of d. From this, the child strategies (which are burdensome to formulate)
take the values of Pa(d) ∩X together with the random variable of d′ to „look up“ the
right random variable. This transformation induces the same distribution on the child
nodes of d. On the other hand, given p′, one can define

dom(d) := dom(d′)× dom(Pa(d′))

having a decision rule that concatenates the random variables p′ and Pa(p′). Then, the
children of p can extract the two separate parts from the concatenated message. This
also gives the same joint distribution on the children and parents of d, which is sufficient
to establish equivalence, as d is irrelevant for utility given its parents and children.

In line 2, we replace a node d that has only action nodes in its neighbourhood by edges
from any parent to any child. Note that by line 1, all of the parents of d have no child
in X ∪ U , we can hence define communication domains.

Choose one parent v of d. Define

dom(v′) := dom(v)× dom(d)dom(Pa(d))

and let v simulate for any parent realisation dom(Pa(d)) in the untransformed random
variable the outcome. The children of d then, similarly to as we showed in line 1, „look up“
the random variable that they use. This construction implies the same joint distribution
of child nodes of d. This guarantees equivalence as after the preprocessing in line 1, only
the child nodes are utility relevant. On the other hand, define

dom(d) := dom(Pa(d′)),

the concatenation of all parent realisations. Again, d’s children can use only the relevant
part in the concatenated message. As this also implies the same joint distribution on the
children of d, we proved that also line 2 is an equivalence transformation.

Concerning line 3, observe that by means of s-connectivity, the random variable U is
independent of v given the parents of w and w itself. Hence

E[U |w,Pa(w),v] = E[U |w,Pa(w),v′].

Therefore, the decision rule at w cannot depend on v and the edge can be deleted without
changing expected utility in any setting.

In line 4, some of the coordination devices are split up. A split happens if for a partition
of child nodes of a device, no nodes in different partition sets have a common descendant
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utility node. To show that such a split cannot change expected utility, we consider
an auxiliary construction: For a coordination device d and a partition of its child set
C1 ∪ C2 ⊆ Ch(d), replace d by two connected nodes d1 → d2 that have child sets
Ch(d1) = C1 and Ch(d2) = C2 (this construction is an inverse operation as in line 2 and
hence an equivalence transformation). It is not too hard to see that if the edge d1 → d2
can be deleted as an equivalence transformation, the split of d is also an equivalence
transformation. By assumption, there are no directed paths C1 99K U 99K C2. Hence as
d2 has no parents but d1,

d-sep (d1, U |{d2} ∪ Pa(d2)) .

Therefore,
E[U |{d2} ∪Pa(d2),d1] = E[U |{d2} ∪Pa(d2),d2],

and d1 is irrelevant to the choice of d2 concerning utility of any agent. Therefore, also
line 4 is an equivalence transformation.

Finally, consider line 5. Let v ∈ D. Any decision rule that was a best response when v
belonged to Di, i ∈ [n] is also a best response when v ∈ D0. Indeed, agent 0 is indifferent
between all outcomes. Conversely, we need to show that agent i is indifferent between
any choice of v. The condition d-sep(v, Ui) implies that v ⊥⊥ Ui, hence

E[Ui|v] = E[Ui|v′],

for any choices of v, v′. Therefore, agent i is indeed indifferent between any choice of
v.

3.3 Discussion and Limits of the Approach

Our assumption of centrality is reasonable from a modelling perspective: Designing a
system (which in this section isM[X ∪U ] together with incoming nodes to this set) that
allows for agent communication not through channels of the system is harder to model and
often unreasonable. For example, in an anonymous internet application, communication
beyond the one offered on websites difficult for the agents.

However, our definition of compatibility rules out an application to some of the results in
the literature. We take [BEW]’s question as an example. They study whether for a single-
agent MAID, the subdivision of an edge by a chance node can (for some parametrisation)
increase utility. In particular, they wish to characterise for which MAIDs this is not
possible for any choice of cpd on this new node. It is easy to see this is equivalent to the
question whether a MAID and one where an additional action node is added subdividing
an edge are equivalent.3 Formally:

3As a deterministic action node implementing the identity function will yield the same expected utility
for all agents.
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Definition. Let M = (X,D,U,E) be an influence graph and e = (u, v) ∈ E. Then we
define the e-augmentation ofM as the influence graphMe := (X ∪ {d}, D, U,E \ {e} ∪
{(u, d), (d, v)}) and assume that the domains of u and e are the same.

Our algorithm helps us to find examples of MAIDs where an augmentation cannot change
utility. The following is an example not contained in the cases listed in [BEW, Proposition
6]:

Proposition 2 (Irrelevance of node addition). Let M be an influence graph. M and
its (u, v)-augmentation are equivalent if the following holds: Pa(u) = {r} ⊂ D and
Ch(u) \ {v} ⊆ D and Pa(r) ⊆ D, compare Figure 4.

Proof. We can use line 2 of algorithm 1 in the non-augmented graph at node r and in the
augmented one at u yielding the same graph. As these are equivalence transformations,
M and its (u, v)-augmentation are equivalent.

Our ground set is not rich enough to formulate some conditions for this question of equiv-
alence. Indeed, it is not too hard to see that u ∈ D and d-sep (u,Desc(v) ∩ U |w) for any
w ∈ Ch(u)\{v} also implies that utility cannot be changed (see [BEW]). Unfortunately,
the deletion of an incoming edge to a chance node is ruled out by our definition of com-
patibility. Therefore, one might think about a definition that also allows chance nodes
to ignore some inputs. We leave this for further work.

Although limited in its theoretical guarantees, our standardising algorithm allows for
simplifications that make equality testing easier and algorithms faster. We continue our
study by considering a strategic choice of the nodes in X in the next two sections.

r

u

v

Figure 4: MAID for which (u, v)-augmentation cannot change utility.
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4 Computing Interventions: Reducing to Non-Commitment

Where the last section studied canonical form of interactions with some nodes fixed, this
section considers strategic choice of chance node cpds. In this and the next section, we
will study the following problem:

MAID commitment Equilibrium

Input A parametrised MAIDM
represented by lists of real numbers (ũ(Pa(u)))Pa(u)∈dom(Pa(u)), u ∈ U ,
and (p(x|Pa(x)))Pa(x)∈dom(Pa(x))

x∈dom(x)

, x ∈ X

(domains for U ∪ X ∪ Pa(U) ∪ Pa(X) are implicitly represented in the
lists),
A set Dc ⊆ D1 represented by indices

Output Decision rules Dc

represented by lists of real numbers (p(d|Pa(d)))Pa(d)∈dom(Pa(d))
d∈dom(d)

, d ∈ D

(domains for D \ (U ∪X ∪ Pa(U) ∪ Pa(X)) implicitly represented in the
lists)

Goal Choose Dc utility maximising among all decision rules Dc such that D1\
Dc, Di, i ≥ 2 are best responses.

It might not be obvious why this problem is different from MAID Commitment Equi-
librium. Reconsider the MAID from Figure 2 (reprinted for convenience as Figure 5)
with the difference that b is now a commitment node (we denote commitment nodes by
a double-lined square). Consider the parametrisation dom(ua) = dom(ub) = dom(a) =
dom(b) = {0, 1}, ũa(a, b) = δabδa0 and ũb(a, b) = δabδb1, i.e. a would like both players
to choose 0, b would like both players choose 1. In the equilibrium concept of MAID
Commitment Equilibrium, a would play 0 for sure and b would follow, in MAID
Equilibrium, b can choose among any of her decision rules given a plays a best re-
sponse to maximise her utility. The optimal choice for b is p(b|a) = δb1 and the optimal
choice for a is p(a) = δa1. Therefore, the „power“ in this parametrised MAID shifts due
to commitment.

In terms of constraints, the difference between MAID Commitment Equilibrium and
MAID Equilibrium is the lack of a utility maximisation constraint for agent i. Denoting
(D \Dc)Dc best responses to Dc, one has for MAID Equilibrium

EUi[(D
c, (D \Dc)Dc)] ≥ EUi[(D

c′, (D \Dc)Dc′)] (2)

instead of
EUi[(D

c, (D \Dc)Dc)] ≥ EUi[(D
c′, (D \Dc)Dc)] (3)
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Figure 5: The strategic coordination MAID with commitment.

for MAID Commitment Equilibrium. We will call a choice ofDc satisfying Equation 2
a commitment best response.

We highlight that for single-agent settings, MAID Equilibrium is the same as MAID
Commitment Equilibrium. Indeed, there is no difference between expected utility
maximising choices and choices being best responses in a cooperative setting.

Another question is why we restrict ourselves to the case where Dc ⊆ D1, i.e. all
commitment nodes belong to one agent. We conclude this section with an example of an
influence graph that has a parametrisation not admitting for a non-cooperative choice of
commitment decision rules.

4.1 Finite Algorithm

A naïve algorithm for MAID Equilibrium might not even be finite, as there is a con-
tinuum of choices for the decision rules (they are probability distributions) and for each
choice, the expected utility value would require an equilibrium computation.

In this section we present a first finite-time algorithm for the problem (assuming that
the communication domains have bounded cardinality; we will study the size of commu-
nication domains in section 5). It will work in complete generality. As a downside, we
show that not only does the reduction increase instance size, but also that a divide-and-
conquer decomposition to speed up equilibrium computation as given in [KM03] is not
possible.

Theorem 3 (Reduction to MAID equilibrium). MAID Equilibrium (M, Dc) can be
reduced to MAID Commitment Equilibrium (M′).

The instance size transforms as follows: For l := |D(M) \ Dc|, m := |E(M)| and
kd := |dom(Pa(d))|, |V (M ′)| = n + 2

∑
d∈Dc kd and |E(M ′)| = m +

∑
d∈Dc 2kd − 1 +

(|Pa(d)| − 1)kd.

Corollary 4 (Finite-time algorithm for general commitment MAIDs). Under the as-
sumption that communication domain cardinalities are bounded, there is a finite-time
algorithm for MAID Equilibrium.
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Proof of Corollary 4. Any MAID can be represented as an extensive form game [KM03,
Section 4] and solved with a generic algorithm for computing equilibria in extensive form
games [MM96].

The crucial observation for the proof is the following:

Proposition 5 (Unnecessary commitment). Let M be an influence graph and Dc such
that all nodes in Dc are roots. Then the set of MAID commitment equilibria and MAID
equilibria with respect to Dc coincide.

Proof. We have to prove that in this case, (2) and (3) coincide. Note that we can write
for any agent

EUi [(Dc,D \Dc)] =
∑

Dc∈dom(Dc)

p(Dc)E

∑
u∈Ui

ũ(Pa(u))

∣∣∣∣∣∣Dc

 .
Hence, the optimisation objective for each agent is a linear function of

E

∑
u∈Ui

ũ(Pa(u))

∣∣∣∣∣∣Dc

 .
Therefore, for each Dc ∈ dom(Dc), the agents will separately maximise this value.
Hence, for each deterministic, and by linearity of expectation also for any probabilistic,
choice of Dc, the other agents will only play best responses. Therefore, (3) and (2)
coincide.

Proof of Theorem 3. We use the same transformation as [MCZ12, Transformation 6]—
which has been used to transform single-player influence diagrams keeping expected
utility constant. We complement their result that their transformation in a multi-agent
setting is a reduction for commitment equilibria.

For each commitment node d ∈ Dc repeat the following. For all root commitment nodes,
return the graph unchanged. Hence assume that |δ−(d)| > 0. For ease of notation, we will
suppress the subscript of kd. Let {Pi}ki=1 = dom(Pa(d)) be an enumeration of all parent
instantiations of d. Add k new action nodes ci, i ∈ [k] and k new chance nodes xi, i ∈ [k],
each with dom(d). Add new edges from any parent of d to any xi, i ∈ [k]. Furthermore,
add edges (ci, xi), i ∈ [k] and edges to make x1 → x2 → · · · → xk a path. Furthermore,
connect xk to all children of d. Compare Figure 6 for the construction. Having introduced
new chance variables xi, i ∈ [k], we need to define their parametrisation. For the first,

p(x1|c1,Pa(d)) =

{
δP1x1 Pa(d) = P1

1
dom(d) else.
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Pa(d)

d

Ch(d)

(a) MAID with commitment.

Pa(d)

x1 x2 . . . xk Ch(d)

c1 c2 ck

(b) Reduction to MAID.

Figure 6: Transformation for the proof of Theorem 3.

(we remark that the denominator m in the corresponding definition in [MCZ12, Trans-
formation 6] is wrong as this does not give a normalised distribution). For i > 1,

p(xi|ciPa(d̃),xi−1) =

{
δxici Pa(d) = pi

δxixi−1
else.

These conditional distributions for each fixed parent instantiation propagate a uniform
random state until i is reached such that Pa(d) = Pi. From then onward, the value in
ci is propagated and finally transmitted to Ch(d). One can think of the nodes ci, i ∈ [k]
as an encoding the decision rule d. For each parent instantiation, the random variables
xi, i ∈ [k] evaluate this function at the parent instantiations on behalf of player i.

The encoding of the decision rules is given by the following correspondence:

p(ci) = pd|Pa(D)(d|Pi).

In [MCZ12, Proposition 7] it is shown for this correspondence and for fixed parametrisa-
tion and decision rules for D \ {d} the same distribution on V (M) \ {d} is induced. In
particular, other agents’ best responses are the same before and after the transformation.
Furthermore, the equality of distributions implies that the equilibrium utility by the two
strategies for agent i are the same. It remains to show, that an optimal (commitment)
choice for d corresponds to a best response (c1, c2, . . . , ck) to the other agents. But note
that all ci, i ≥ k are roots. Therefore any best response is also a commitment best
response by Proposition 5.

Concerning the number of nodes, there are exactly 2k additional nodes ci and xi. Fur-
thermore, there are 2k− 1 connecting new nodes among one another (|Pa(d)| − 1)k new
edges connecting d’s parents to the new nodes. Summing over all nodes d ∈ Dc yields
the claim.

The coefficient k is doubly exponential in the number of inputs to the mechanism. We ar-
gue that this transformation has also been used in the computational literature [MCZ12].
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Nevertheless, decomposing the problem into more manageable ones would be helpful. The
next section shows that this is not the case by means of [KM03, Algorithm 6.2].

4.2 Negative Result for a Divide-and-Conquer Approach

[KM03, Algorithm 6.2] allows for faster equilibrium computation if the MAID has small
strongly connected components. We show that for a fixed transformed commitment
node d ∈ Dc, (ci)i∈[k] is strongly connected in M′’s relevance graph. This shows that
a divide-and-conquer approach to equilibrium computation is not promising for MAID
Equilibrium.

Proposition 6 (Large connected components in transformed Graph). Let d ∈ Dc a
non-root node and Desc(d) ∩ U1 6= ∅ in the un-transformed graph. Then the new nodes
ci introduced by the transformation in Theorem 3 pairwise strategically rely one another.
In addition:

1. All ci are relevant to or strategically rely on the same other nodes.

2. There are MAIDs M such that, in the transformed influence graph, the ci strate-
gically rely on nodes that d did not rely on in the original influence graph.

Less technically, Proposition 6 says that commitment nodes for different parent instantia-
tions are not selected separately if in the original graph d was relevant to the commitment
agent’s utility. This is consistent with the idea of „credible threats“, i.e. that a player
induces a desirable equilibrium by threatening agents with the consequences if they do
not obey, even if this harms the player’s own utility.

Proof of Proposition 6. We start with the main statement. Let i, j ∈ [k]. We use
[KM03]’s graphical criterion for strategic relevance to show that ci strategically relies
on cj . By Desc(d)∩U1 6= ∅, there is a directed path xkd 99K u1 from x

k̃
to U1. For i < j,

add a new parent ĉ to cj . Then

ĉ→ cj → xj → xj+1 → · · · → xkd 99K u1

is an active path that establishes strategic relevance. For i > j, add a new parent ĉ, this
time to ci. Furthermore let d− be a parent of d in the original graph. Then

ĉ→ ci → xi ← d− → xkd 99K u1

is another active path that establishes strategic relevance in this case (note that the
v-structure at xi is unblocked by the evidence from cj (which is a descendant of xi by
i > j).

We continue with the additional assertions. It is straightforward to check that the sets
of descendants and the set of d-connected nodes to ci (and, as they have no parents, also

23



a ua

x1 x2 ub

c1 c2

Figure 7: Strategic relevance through addition of commitment.

from a newly added parent ĉ) coincide for any i ∈ [kd]. As no path can pass through
ci (it has only one incident node) and as it has no parents, the conditioning on ci or its
parents neither blocks nor unblock any active path. Therefore, all ci are s-reachable and
s-reach the same nodes.

For the last assertion, the influence graph Figure 5 is an example. The transformed
influence graph is depicted in Figure 7. Note that in Figure 5, there was no active path
from â, a new parent added to a, to ub given b ∪ Pa(b) (as the only path is blocked by
b), but in the transformed MAID, there is the active path

c1 → x1 → x2 → ub,

yielding the claim.

The number of additional nodes ci far exceeds the number of nodes in the graph. There-
fore the fact that they all form a strongly connected component limits the usefulness of
the decomposition in [KM03, Theorem 6.2].

Therefore, algorithmic speedup due to divide-and-conquer is limited, and the strategic
relevance of commitment nodes can be studied via the reduction given in Theorem 3.

We close this section by showing that a non-cooperative problem similar to MAID Equi-
librium suffers from equilibrium non-existence.

4.3 The Case of Several Agents

Consider the modification of MAID Equilibrium for Dc ∩Di 6= 0 and Dc ∩Dj 6= ∅ for
some i 6= j ∈ [n]. Now the decision rules of different commitment agents are chosen so
that they are best responses to one another given that all other decision nodes are best
responses to them and each other. The following example appears in different formalism
in [Mye81, Proposition 3]. We reformulate it as a problem of computing an MAID
Equilibrium where two agents have commitment nodes. Therefore, even analytically,
a non-cooperative version of MAID Equilibrium is challenging.
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Figure 8: MAID not admitting a commitment equilibrium

Proposition 7 (Equilibrium non-existence). Figure 8 has a parametrisation such that
there is no non-cooperative commitment equilibrium.

Proof. We give the example of [Mye82] with one additional argument concerning com-
munication domains. Parametrise

dom(y1) = dom(y2) = {0, 1} dom(b1) = dom(b2) = {0, 1, 2}

The utility functions ũai , ũbi , i = 1, 2 are shown in Table 1 with implied domains in the
real line. We first remark that dom(a1) and dom(a2) can be chosen as {0, 1}. Indeed,

ũa1 ,ũb1 y1 = 0 y1 = 1

b1 = 0 1, 6 2− δb22, 0
b1 = 1 2− δb22, 0 1, 6
b1 = 2 0, 5 0, 5

ũa2 ,ũb2 y2 = 0 y2 = 1

b2 = 0 1, 6 1 + δb12, 0
b2 = 1 1 + δb12, 0 1, 6
b2 = 2 0, 5 0, 5

Table 1: Utilities for the example of a MAID not admitting an equilibrium with several commitment
agents.

for any other domains and functions, let pai|yi
(ai|yi) and pbi|ai

(bi|ai), ai ∈ dom(ai) be
given. Then consider the conditional probability mass functions

p_(ai|yi) = δyi
pd(bi|ai) =

∑
a′
i∈dom(ai)

pbi|ai
(bi|a′i)pai|yi

(a′i|ai)

It is straightforward to check that p_ and pd induce the same distribution on uai and
ubi as pai|yi

and pbi|ai
. Therefore, there are decision rules that give each agent the same

utility. As any decision rule can be transformed into such a standard rule (we will study
p_, so-called concatenation rules, in more detail in section 5) this even is an equilibrium.
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Therefore, we can restrict ourselves to

dom(ai) = {0, 1}

The following four implications for marginal distributions suffice to establish equilibrium
non-existence

pb2(2) = 1⇒ pb1(2) = 0

pb1(2) = 0⇒ pb2(2) = 0

pb2(2) < 1⇒ pb1(2) = 1

pb1(2) > 0⇒ pb2(2) = 1

First, observe that this is not satisfiable. In the case that pb2(2) = 1, the first two
implications contradict each other. In the case pb2(2) < 1, the last two contradict each
other.

If pb2(2) = 1, then a1 is indifferent between b1 ∈ {0, 1} but prefers it to b1 = 2. b1
prefers to match the signal y1. Therefore, in any equilibrium,

p(a1|y1) = δa1y1 p(b1|a1) = δb1a1 ,

in particular pb1(2) = 0. A very similar argument on a2 and b2 holds for the second
implication—we leave it to the reader.

In case pb2(2) < 1, a1 prefers if b1 does not match the signal y1. Then, in any equilibrium,
it is optimal for a1 to not disclose any information on y1 to b1, upon which b1 chooses 2,

p(a1|y1) =
1

2
p(b1|a1) = δb12.

This implies pb1(2) = 1. The fourth implication is again very similar.

It is not apparent why the reduction from Theorem 3—which would guarantee equilib-
rium existence—breaks down in the case of multiple equilibrium agents. The problem
here, however, is that the construction of the reduction by making all commitment nodes
roots frees commitment decision rules from all incentives. Therefore, using the same
reduction for several agents would mean that these choose their decision rules coopera-
tively, which is often not reasonable. In cooperative applications, this could be, however,
a potential direction for further research.

In this section, we presented a first approach to computing MAID commitment equilibria
and showed its limits. The next section makes a further assumption to allow for an LP
formulation which is more efficient.
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5 Computing Interventions: Characterising Strategies and
an LP Formulation

This section shows for a class of MAIDs with a restricted structure that any attainable
expected utility vector is attained for one fixed choice of communication domains and
decision rules only depending on the parametrisation’s domains. Using this structure, we
show for a narrowly defined class of MAIDs how polynomially solvable LP formulations
for MAID Equilibrium may be obtained.

The outline of the section is as follows: We first define the class of private values MAIDs
and then introduce the main result, a characterisation of the equilibrium decision rules
for action nodes in D \Dc. Then, we introduce our class of centralised liability MAIDs.
We show that liability MAIDs admit a polynomially solvable LP formulation for MAID
Equilibrium in the case of dense dependency.

Definition. Let M = (X,D,U,E), Dc ⊆ D1 be an instance of MAID Equilibrium.
We call the tuple (M, Dc) a private values MAID if the following four properties hold:

No information restrictions Pa(X) ∩D = ∅.

No non-commitment utility-relevant actions Ch(v) ∩ U 6= ∅ only if v ∈ Dc ∪X.

Independent Actions For any d, d′ ∈ Dc, (Anc(d)∩Anc(d′)∩(D\Dc)) = ∅ or Pa(d) =
Pa(d′).

No Hints E(Dc, D) = ∅.

Compare Figure 9 for a pictorial description of private value MAIDs.

We comment on the assumptions in the definition. Allowing for communication re-
strictions in mechanism design is complicated, and only partial results are known, e.g.
[BNS07]. Similarly, there are only few results when outcome-relevant actions by non-
commitment nodes are allowed. Some of the resulting issues are covered in dynamic
mechanism design; see survey [BV19]. The third assumption ensures that there is no
communication between agents that send their messages to different commitment nodes.
Being a tractability assumption, this might be interesting for modelling decentralised
decision making. We leave the relaxation of the independent actions assumption for fur-
ther work. The last assumption says that the commitment nodes do not send signals to
agents, which says that information flows only in one direction and commitment nodes
do not take coordinating roles for agent decisions.

We highlight that private values MAIDs allow for inter-agent communication.
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Figure 9: Structure of private value maids. The only edges in this structures graph are either within
blocks or between the blocks connected by edges in this graph. For a definition of Dd, see the
proof of Theorem 8.

5.1 Concatenation Strategies

Definition (Concatenation Strategies). Let d ∈ D \ Dc. The concatenation strategy
consists of the communication domain specification dom(d) := dom(Pa(d)) together with
decision rule

p_(d|Pa(d)) = δdPa(d)

that deterministically sends all parent information.

Note that by our no information restrictions assumption, if all d ∈ D \Dc play concate-
nation strategies, one can construct domains for all agents in topological order of the
DAG (X ∪ D ∪ U,E). The following result shows that suffices to replicate all possible
MAID equilibria.

Theorem 8 (Commitment strategies). Let (M, Dc) be a private values MAID and
let (Dc,D \ Dc) be a MAID equilibrium. Then there are decision rules pd(d|Pa(d)),
d ∈ Dc, such that the induced joint distribution D′ is a MAID equilibrium.

Proof. As a first step, we can merge all nodes d ∈ Dc that have the same parent set
into one node that has their cartesian product as domain. This follows, because the
parametrisation in which each utility node only takes into account the part that belonged
to its parent in the original graph implies the same utilities. For this reason, it is without
loss to assume that

(Anc(d) ∩Anc(d′) ∩ (D \Dc)) = ∅
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for any d, d′ ∈ Dc.

For brevity, we denote in this proof Dnc = D \Dc. Denote furthermore

Xc
d := Pa(d) ∩X Xd := Anc(d) ∩X \Xc

d

Dc
d := Pa(d) ∩Dnc Dd := Anc(d) ∩Dnc \Dc

d

all the values in X resp. D accessible to d ∈ Dnc via concatenation strategies and those
directly observed by d. Denote X̂d := Xc

d ∪ Xd and D̂d := Xc
d ∪ Xd, and furthermore

X̂ =
⋃

d∈Dc X̂d and D̂ =
⋃

d∈Dc D̂d. For any subset A ⊆ X̂d ∪ D̂d denote by

A(Pa(d))

the value A as either observed by d or sent via concatenation strategies from d ∈ Dd (this
value is unique as in equilibrium, all observed or via a concatenation strategy reported
values must coincide).

With respect to (Dc,Dnc), let

p(Dnc|X) p(Dc|Dnc ∪X)

be conditional probability mass functions implied by set of decision rules D. Denote the
domains with respect to (Dc,Dnc) as dom (we will not need a notation for the domains
of a concatenation strategy). We can simplify the probability mass functions through
the following independencies, which can be checked via the d-separation criterion.

D̂d ⊥⊥ D̂d′ |X̂d

D̂d ⊥⊥X \ X̂d|X̂d.

for d, d′ ∈ Dc, d 6= d. Note furthermore, that we can assume that D̂ = Dnc any node in
the complement cannot have a directed path to a utility node. Then

p(Dnc|X) =
∏
d∈Dc

p(D̂d|X̂d)

p(Dc|Dnc ∪X) =
∏
d∈Dc

p(d|D̂d).

Then for d ∈ Dc, define

pd(d|Pa(d)) =
∑

D̂d∈dom(D̂d)

p(d|D̂d(Pa(d)))p(D̂d|X̂d(Pa(d)))

It is tedious but straightforward to check that p_ and pd, d ∈ Dc induce the same
probability distribution on D as D. This also implies that all expected utilities of agents
are the same.
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Note that as for any strategies this gives the agents the same utility, the decision rules
defined by (p_, pd) form an equilibrium. This concludes the proof.

Results similar to Theorem 8 are called revelation principle in the economics literature,
compare [Mye86] for an early form. Our result differs from prior known revelation prin-
ciple in that agents can report complexly interrelated private information in the form of
chance nodes X. Requiring more structure of the MAIDs and on the parametrisation,
this characterisation can even lead to a compact LP solution, as the next subsection
shows.

5.2 Using Properties of a Parametrisation for Efficient Computation

Given the characterisation Theorem 8, a linear programming formulation of MAID
Equilibrium is possible. In complex communication patterns, however, this formulation
is vast, despite finite.

We restrict ourselves to a very particular structure that allows for pre-processing that
yields a polynomially solvable LP.

Definition. A liability MAID is a parametrised private values MAID (M, Dc) such
that the following holds:

Centralisation E(Di, Dj) = ∅, i 6= j ∈ [n], compare definition in section 3.

One Commitment Node Except Liability Nodes Dc = {dc} ∪ {dlj}j∈[n]\{1}.

Unlimited Liability For each i ∈ [n] \ {1}, there is uli ∈ Ui, Pa(uli) = Pa(dc). Further-
more, max ũli −min ũli >

∑
u∈Ui\{ul

i}
max ũ−min ũ.

We say that for a sequence of parametrised MAIDs (Mn)n∈N correlation is dense if∑
v∈D(Mn)

|δ−(v)| ∈ Θ(|X(Mn|). This is in particular satisfied if one node has in-degree
in Θ(|X(Mn)|).

The first assumption captures the property that all communication is controlled by the
commitment nodes, the second and third say that for each non-commitment agent there
is one commitment node that is exactly utility relevant for one agent and that the cor-
responding utility node has a large range. The name liability will become clear in the
proof of the next proposition.

Proposition 9 (Polynomial-time algorithm for liability MAIDs). There is an LP for
MAID Equilibrium liability MAIDs that can be solved in polynomial time if there is a
uniform bound C on the cardinalities of domains dom(x), x ∈ X.
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Proof. By Theorem 8 (ancestor sets of all commitment nodes are equal), we can assume
that all choice rules except for d, dl

i, i ∈ [n] \ {1} are concatenation rules. We transform
the instance of MAID Equilibrium to a problem of determining only one choice rule
for dc. We need additional notation: For d ∈ Pa(dc) = Pa(dlj), j ∈ [n] \ {1}, d ∈ Dj

and x ∈ Anc(dc) ∩ X, denote d(x) the report of x by d. If this cannot be defined (as
d reports different values of x), let ulj take its minimal value with certainty. Otherwise,
if d(x) 6= d′(x) for d ∈ Di, d′ ∈ Dj , i, j ∈ [n] \ {1}, then give uli and u

l
j their minimal

values. In any other case, give an agent the maximal value of ulj . Note that this (weakly)
increases the utility of playing a concatenation strategy and (weakly) decreases the utility
of not playing a concatenation strategy. Therefore, also after this change of choice rule,
concatenation strategies form an equilibrium. Furthermore, this does not change the
utility of agent 1. Therefore, this is still a MAID commitment equilibrium. Under these
decision rules for dli, furthermore, agents j ∈ [n] \ {1} would prefer any decision at d
over the minimum value at ulj , which implies that they will never misreport a value that
is reported by at least one other agent (and will themselves not report different values).
Note that at this point the assumption of centrality is crucial: If on a path from X to dc

there were different agent only giving the last agent negative utility would not suffice to
let agent report truthfully.

Therefore, as an equivalent problem, we can assume that Dc = {dc} and ignore all utility
nodes ulj , j ∈ [n] \ {1}. We can define (differently as in the proof of Theorem 8)

Xi =

 ⋃
d∈Di

Anc(d) ∩X

 \
 ⋃

d∈D\Di

Anc(d) ∩X


to be the set of all chance node values that are uniquely reported by agent i ∈ [n] \ {1}
and not observed by dc. Furthermore, denote

X̂ = Anc(Dc)

the values that are either observed by dc or reported by an agent (but maybe multiple
times). Furthermore, we will write a conditional probability mass function p(d|X) in
sequence notation pd|X . In addition, we write ui

d,X̂
instead of∑

u∈Ui

E[ũ(d, X̂,X \ X̂)|d, X̂].

Furthermore, we write d instead of dc. With these notations, the following LP solves the
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MAID commitment equilibrium problem

maximise pTu =
∑

X̂∈dom(X̂)
d∈dom(d)

pX̂pd|X̂ud,X̂ , such that

∑
X̂\Xj∈dom(X̂\Xj)

d∈dom(d)

pX̂pd|X̂\Xj ,Xj
ui
d,X̂\Xj ,Xj

i ∈ [n] \ {1},

≥
∑

X̂\Xj∈dom(X̂\Xj)
d∈dom(d)

pX̂pd|X̂\Xj ,X
′
j
ui
d,X̂\Xj ,X

′
j

Xj ∈ dom(Xj)

∑
d∈dom(d)

pd| dom(X̂) = 1, X̂ ∈ dom(X̂),

pd|dom(X̂) ≥ 0, d ∈ dom(d)

X̂ ∈ dom(X̂).

Here, the vector p is
(pd|X̂) d∈dom(d)

X̂∈dom(X̂

The last two sets of constraints ensure that pd| dom(X̂) indeed defines a probability distri-
bution. The objective maximises expected utility for the commitment agent. The first
set of constraints ensures that truth-telling is a best response for the values of X he does
not report himself.

It remains to show that this formulation is polynomial-time solvable. First observe that
pX̂ can be computed using variable elimination in time O(|V (M)|·|dom(X)|) by variable
elimination. Furthermore, the sum of expected utilities ud,X̂ can also be computed using
variable elimination in time O(|U(M)| · dom(X)), compare [KFB09]. (|dom(d)| + 2) ·
|dom(X)| is an upper bound on the number of inequalities and |dom(X̂)| · |dom(d)| is
the number of variables. Both are polynomial in the representation size of the parametri-
sation, as for sufficiently large n, there must be a node X that has in-degree at least
c|X(Mn)| and hence needs at least 2c|X(Mn)| representational size (as a preprocessing
step, we can just ignore all chance variables with domain cardinality one, as they are
deterministic). Furthermore, the utility functions need a representation size of at least
|dom(d)|. Finally,

|dom(X)| ≤ C |X(Mn)| ≤ (2c|X(Mn)|)
1
c
log2(

C
2
)

proving that the number of variables and the equations is polynomial in the representation
size ifMn. Therefore, the separation problem can be solved in polynomial time, implying
a polynomial-time algorithm by the ellipsoid method (see e.g. [GLS93]).

This section showed that in private values settings, the communication domains and
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decision rules can be chosen in a particular form. Together with an assumption on
parametrisation, this can be turned into an efficiently solvable LP for MAID Equilib-
rium.

We presented a second approach to solving MAID Equilibrium, which might be promis-
ing for subclasses of MAIDs, as we demonstrated. We now present related work and,
consequently, conclude.

6 Related Work

Our first contribution on canonical forms of games is most similar to the literature on the
reduced form of extensive-form games. [Tho52] defined four transformations as „equiva-
lence transformations“. They showed that for deterministic games, these transformations
allow for a unique minimal game in a sense made precise in the working paper. [KM86]
extend this result to games including chance (see also the unified framework [Bru]) and
uses it in a classification of equilibrium concepts. [LF87] obtains similar results with a
focus on identifying strategies of agents. We differ by our more unified approach. First,
our model (MAID) allow for a richer temporal structure. Furthermore, the game trans-
formations mentioned above are not found by defining an equivalence relation but are
ad-hoc choices.

A second part of the literature that our first contribution relates to is system design.
There has been work on insertion of in-edges to decision nodes, among others [LN01;
Mil+08; Eve+19]. All give either partial (e.g. single-action) or only one direction (namely
that d-separation in the graph implies that any equilibrium in the graph without the edge
also an equilibrium when adding the edge). [Bla53; How66; BEW] study the addition
of nodes to influence diagrams, [Bla53] in a restricted setting, [How66] proposing an
algorithm, [BEW] with sufficient criteria that the utility of agents is not changed by the
introduction of new nodes. Furthermore, there has been work on whether the control of
a chance node by an agent can change utilities for agents [Eve+19; SH10]. Our approach
does not consider specific operations on graphs and check whether they do not change
equilibrium outcomes, but define a concept of equivalence. By providing a normalising
algorithm, we unify several operations that do not change outcomes.

Our second and third contributions are related to algorithmic mechanism design (which
in influence graph terms would be „decision rule design“). On the one hand, algorithmic
mechanism design that uses the equilibrium concept of dominant-incentive compatible
equilibria (hence all actions should be best responses whatever the other agents’ decision
rules are) studies (combinatorial) auctions in different informational and computing set-
tings. See the survey [Nis15] for an introduction to this field. Our approach differs in
that randomness plays a vital role in our analysis, for which a more permissive equilib-
rium concept is needed. Furthermore, we do not require combinatorial structure in the
problem such as valuations on subsets of a finite set, but only assume that all our state
variables have finite domains.
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Bayesian algorithmic mechanism design takes a perspective of approximation when the
environment is not exactly known to the designer. Indeed, as [Har13] (see also the chap-
ter in [Nis+07]) shows, decision rules can adapt to information they get from a subset
of the agents without raising incentive problems. Using such algorithms, constant-factor
approximations on welfare of interventions can be obtained. We differ from this literature
in that we do assume that all agents have complete information of probability distribu-
tions. The hardness in our problem arises from the complicated correlation structure of
information and not from the interactions of learning model parameters and incentives
as in [Har13].

Our transformation in section 4 introduces much communication into a game theoretic
model. Closest to this explicit modelling of communication of the specifics of a mechanism
is [NS06]. They study a combinatorial allocation model (i.e. there are several goods which
shall be partitioned into sets allocated to different agents, which then pay pre-specified
tranfers). In their model, they show an exponential lower bound on communication
whenever the auctioneer would like more expected surplus than when allocating all items
in grand bundle. In particular it is shown that almost all personalised prices must
be communicated to the agents. Our model is different in that we do assume neither
combinatorial structure nor specific functional forms as [NS06] does. We are however
similar in that in our transformation, the complete mechanism is communicated to chance
nodes.

The non-existence result we presented in section 4 can be relieved by a concept of quasi-
equilibrium, as shown in [Mye82, Section 4]. In other models where interactions be-
tween agents and commitment choice nodes are required to be denser, equilibria exist,
as [Yam10] shows in their work on several competing principals (i.e. commitment choice
nodes of different agents). We differ from this in that we neither relax the equilibrium
assumptions imposed on MAIDs nor consider restricted graph classes, raising a non-
existence issue.

Our last contribution on a characterisation of communication domains and, implied, a LP
reduction of MAID Equilibrium is in the tradition of the revelation principle [Mye82].
The literature has produced variants with dynamic arrival of information, such as in
[Mye86] and for more different equilibrium concepts [SW17]. For a model with, in out
terminology, three players, one commitment node and two chance nodes, [CS02] gave an
LP reduction for MAID Equilibrium. [CS04] showed that concatenation strategies in
a restricted setting could make the computational problem much harder for the agent
possessing commitment nodes. We differ from the first three papers in that our notation
is lighter than theirs and in that we allow for sparsity in the model. We consider a
much more general model than the fourth paper in deriving our results. In addition,
the complexity results in [CS04] (in particular their Theorem 2) relate to deterministic
mechanisms, which much more often produce computational hardness result. It is not
evident whether this result transfers to a Bayesian setting.

Finally, Algorithmic Game Theory studied other graphical representations of games.
Strategic graph formation [Jac10, chapter 11] and congestion/routing games [Nis+07,
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chapter 18] take the graph structure as part of the game. Local/graphical games [Nis+07,
chapter 7] let only agents interact that are incident in an underlying graph. Action-graph
games [JLB11] allow the actions to only depend on the action counts of some other agents,
hence have sparsity enforced depending on context. Temporal models such as extensive
form game representations or the similar concept of decision trees are most similar to
influence diagrams in nature (compare [MWG95, chapter 9] resp. [KFB09, Section 23.1]
for introductions from an economic or probabilistic graphical models perspective). By
using the established MAID formalism, we allow for some temporal structure, but not a
total order, which none of the other models permits.

Having given pointers to relevant literature, we are ready to conclude.

7 Conclusion and Future Directions

This thesis asked for a concise model for interventions on agent interactions and how to
compute such interventions. We obtained some first results, which are the following:

First, we defined an equivalence relation on Multi-Agent influence diagrams (outcome
equivalence) and presented a normalising algorithm. This allowed us to identify a slight
generalisation of results in [BEW].

Furthermore, we showed that all MAIDs with commitment may be represented using
ordinary MAIDs, but that this reduction adds exponentially many nodes. We also showed
that an approach for dividing a MAID computation into smaller sub-problems does not
help, as nodes newly introduced in the reduction have strong dependencies.

Finally, we showed that for a restriction of agent communication, the strategies of agents
can be chosen in a way that allows for the solution of the problem as an LP.

We highlight three shortcomings of the present work.

On the one hand, we did not consider the design of channels in case there are limits
to communication. Indeed, in section 3, we treated all chance nodes as fixed, and in
section 5 we assumed that are no chance nodes on any path connecting two decision
nodes.4

Furthermore, our formalism does not allow us to study specific parametrisations such as
functional forms for utilities. These, however, are important for many of the standard
results in the (economic) mechanism design literature. For example, [Mye81]’s celebrated
results depend crucially on quasi-linear utilities for agents.

Finally, our approach assumes complete knowledge of all agents of the distributions in
the network. The unreasonableness of this full-knowledge assumption is a problem in
Bayesian mechanism design more generally, one approach to tackle it being prior-free

4On the other hand, the (computationally intractable) approach based on a reduction to MAID equi-
librium computation presented in section 4 could also take into account information channels
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mechanism design [Har13]. By modelling sparse dependence structure in our model, we
tried to make our full-knowledge assumption more reasonable by allowing the model to
represent complex arriving information.

Despite these shortcomings, we mention a few avenues for further work:

A first important direction is proving the uniqueness conjecture in section 3. A proof
of this result would allow for the unified proof of several results in the literature. In a
second step, one could relax the assumptions on agent communication, in particular the
notion of centrality.

A second direction pertains to approximation algorithms. We reduced a newly introduced
computational problem, MAID Equilibrium, to two problems that are themselves hard
(one MAID and one large LP). Given that even IDs are only fixed-parameter tractable,
as [MCZ12] report, there is not much hope for efficient algorithms. It would be interest-
ing, however, to study approximation algorithms.

The non-existence of non-cooperative MAID equilibria opens up two directions of further
research: The first is to define equilibrium concepts that admit an equilibrium and to
characterise their graphical properties such as strategic relevance of action nodes (as we
did for one commitment agent and the equilibrium concept of MAIDs). The second is to
consider the problem of equilibrium existence as a forbidden subgraph problem: Is there a
set of subgraphs whose containment in MAIDs is equivalent to equilibrium non-existence
for some parametrisation?

Moreover, our LP reduction allows for the generalisation of some results from the eco-
nomics literature that do not use functional specifications so thoroughly that we would
not expect generalisations in more general models. The first result is [BS01], which char-
acterises partial commitment (which we did not permit in section 5). A generalisation
of this result would consist in proving that the strategy characterisation we proved in
section 5 also holds with non-zero probability for choice nodes that are not commitment
nodes. Similarly, exploiting the structure of the LP one could generalise [CM88] by
showing that some of the inequalities in the LP are redundant when agents report the
same or correlated quantities.

Finally, mechanism design is lacking concise graphical representations. Indeed, papers
rarely show illustrations, and if so, then precise semantics of them are lacking. We hope
that MAIDs with commitment will allow for illustrations with precise semantics and help
students and researchers to more easily grasp mechanism design theory.
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