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ABSTRACT
Benchmarks and evaluations are central tomachine learningmethod-
ology and direct research in the field. Current evaluations test sys-
tems in the absence of humans. This position paper argues that the
machine learning community should use centaur evaluations, in
which humans and AI jointly solve tasks. Centaur Evaluations re-
focus machine learning development toward human augmentation
instead of human replacement. They allow for direct evaluation of
human-centered desiderata, such as interpretability and helpfulness,
and can be more challenging and realistic than existing evaluations.
By shifting the focus from automation toward collaboration between
humans and AI, centaur evaluations can drive progress towardmore
effective and human-augmenting AI systems.

CCS CONCEPTS
• Applied computing → Economics; • Human-centered com-
puting→ Heuristic evaluations; • Social and professional topics
→ Governmental regulations; • Computing methodologies→
Learning settings.

KEYWORDS
evaluation, benchmarks, human augmentation, human replacement,
Turing trap, centaurs

1 INTRODUCTION
Benchmarks and evaluations are central tomachine learningmethod-
ology and direct machine learning research [67]. Machine learning
systems also expand into many parts of society, which requires
considering the broader impacts of evaluations. This position pa-
per is concerned with how AI system evaluation incorporates hu-
mans.We argue that there should be more (or any systematic)
centaur evaluations in which humans and AI solve a task
cooperatively.1

Much progress is happening not only in development but also
in their evaluation. However, among frequently used evaluations
[17, 18, 20, 28, 33, 38, 39, 64, 71, 73, 80, 81], there is no explicit
involvement of humans in LLM evaluations.2 with very few excep-
tions [69, 83]. Human involvement in evaluation or tuning might
be viewed as overfitting or, even worse, cheating. The gold standard
of solving a task is full automation. A result of this is that models
that are good at augmenting or complementing humans are not
rewarded, and related capabilities are invisible in the most common
evaluations.
1We use the term Centaur Evaluations in the memory of centaur chess (also known as
advanced chess or freestyle chess), in which humans use chess computers in their play.
Centaur chess was proposed by former chess world champion Garri Kasparov [70].
2This even holds for more complex, multi-step interactive evaluations, compare [84]
for travel planning, Majumder et al. [53] for scientific discovery, Deng et al. [25], Zhou
et al. [88] for web navigation on tasks, and Drouin et al. [27] for broader knowledge
worker tasks.

We claim that increasing the amount of centaur evaluation in
machine learning will benefit society and make three arguments to
support our claim. First, centaur evaluations raise the bar for eval-
uating machine learning capabilities to those that involve human
perception and dexterity (Section 4.1), in the spirit of Moravec’s
paradox: (Moravec [56], p.15): “It is comparatively easy to make
computers exhibit adult level performance on intelligence tests
or playing checkers, and difficult or impossible to give them the
skills of a one-year-old when it comes to perception and mobility.”
Centaur evaluations might lead us away from evaluating AI with
exams Metz [55] and toward evaluations that more closely resemble
machine learning use.

Our second argument for centaur benchmarks is that they allow
to directly evaluate of human-centered desiderata of machine learn-
ing models, such as interpretability [16], complementarity [26], and
helpfulness [8] (Section 4.2). This is in contrast to current evalua-
tion methodologies, which require (often unsatisfactory) proxies
for these desiderata.

Finally, and for us most importantly, centaur evaluations can
recenter machine learning practice toward human augmentation
and away from a destructive path of human replacement, leaving
some without economic power and wealth and others with high
amounts of both (Section 4.3). There are clear incentives for imita-
tion. Imitation-based evaluations are straightforward to formalize
as supervised learning problems, humans provide ample training
data in the behavior being imitated, and results are easy to commu-
nicate to the public, as most people have engaged in the behavior
that systems are trained and evaluated to imitate.

Evaluation based on imitation, in turn, leads to incentives for
human replacement instead of human augmentation, which has led
economists to call for human augmentation Acemoglu and Johnson
[2], Brynjolfsson [11], Brynjolfsson and McAfee [13]. Brynjolfsson
[11] introduces the Turing Trap is the risk of creating technologies
that replace humans and leave them without economic and political
power. It highlights the dangers of focusing too narrowly on AI
systems that imitate human intelligence rather than augment it.

The argument in this position paper is structured as follows.
We set the stage by defining centaur evaluations in Section 2. We
then trace historical reasons for why, despite several examples in
computer science literature, the machine learning community pays
little attention to evaluations with humans in Section 3. We expand
on the main benefits of centaur evaluations, which we outlined in
this introduction, in Section 4. We then go into possible objections.
Section 5 considers models for running centaur benchmarks, us-
ing infrastructures from crowd work, randomized controlled trials,
and competitions. We discuss alternative viewpoints in Section 6.
Section 7 concludes. Appendix A contains additional examples of
centaur evaluations inspired by existing (non-centaur) evaluations
and research papers in the social sciences of technology. We keep
mathematical notation to a minimum for easier accessibility and
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only use it in Section 4.3 to highlight how centaur benchmarks
allow for a formalization of human augmentation.

2 CENTAUR EVALUATIONS
We informally define the benchmark we advocate for.

A centaur benchmark for a machine learning system con-
sists of three components:

(1) A task, i.e. a distribution over environments that deter-
mine human and machine actions, as well as a selection
criterion for humans who partake in the centaur bench-
mark.

(2) An interaction model, i.e. available messages for hu-
man and machine learning system, and modalities of
exchange of messages,

(3) A score function, which scores actions taken in the
environment. Beyond performance, it may also involve
human time used and computations undertaken.

A fourth component, which is helpful but not integral to cen-
taur benchmarks, is a way to communicate transcripts. For
many cooperative tasks, a high score of a system is much less
informative than how the score was achieved. Transcripts of
successful centaurs allow humans and model developers to
improve human-AI collaboration.

In principle, there are two types of centaur benchmarks. The first
is raising the restriction of current benchmarks that they must not
involve humans. We call these centaurized benchmarks. Consider,
for example, MMLU Hendrycks et al. [38] without the requirement
that no human should be involved in the solution of the task. MMLU
prompts are provided to a human, who is asked to, after delibera-
tion, provide a response (task). Humans and LLMs can exchange
messages via text (interaction). Correct responses are recorded, sub-
ject to costs or limitations on the amount of tokens and/or human
time used (scoring). The transcripts of interactions can be recorded,
e.g., as a screen capture (transcript). These are relatively low-effort
ways to “centaurize” existing benchmarks. We provide additional
centaurized evaluations in Appendix A.1.

Other evaluations are specifically designed with the additional
affordances of centaur benchmarks in mind. (The following is in-
spired by the social science paper Brynjolfsson et al. [12]). A call
center agent interacts with a chatbot to help a client with a request
via phone (task). The agent and the LLM agent interact by chat (in-
teraction). Satisfaction, time, and the number of tokens generated
constitute the score (scoring). Finally, a transcript can, subject to
the approval of the caller and the agent, be shared (transcript). We
propose centaur evaluations in Appendix A.2.

We want to highlight that there are systems proposed that stan-
dardize components of centaur evaluations. The concurrent re-
search Shao et al. [69] proposes an interface for interactions in
centaur evaluations (the authors of [69] use “collaborative agents”
instead of centaurs). They implement an asynchronous computation
and communication handler with an interface similar to OpenAI’s
Gym [10].

3 WHY ARE THERE FEW CENTAUR
BENCHMARKS?

The reason for why benchmarks are so often based on imitation
may be partly traced back to the historical roots of the machine
learning and artificial intelligence research communities.

3.1 Turing
Alan Turing’s eponymous test of intelligence of a machine [76]
is arguably a main foundation of artificial intelligence, yet also a
deeply human-imitating idea: The main standard of intelligence is
whether a human discriminator can distinguish what an algorithm
says from what a human says. As generative adversarial networks
taught us, developing technology with the goal of passing the Tur-
ing test eventually leads to imitation [34]. The imitation-based
approach that Turing started, we claim is still a foundation of what
makes “good AI”. It views human involvement in systems as a dis-
traction from the goal of intelligence, defined by its ability to be
indistinguishable from a human.

Turing’s imitative perspective is not the only basis for steering
technological progress—other sub-fields of computer science started
out differently.

3.2 Bush, Licklider, and Engelbardt
The difference played out in the early days of human-computer
and human-robot interaction. Foundational thinkers envisioned
technologies that amplify human capabilities rather than replace
them. One foundational example is Vannevar Bush’s concept of the
memex [14]. The memex was conceived as a cognitive augmenta-
tion tool, enabling individuals to organize and retrieve information
seamlessly through associative links, much like internet hyperlinks.
Bush’s vision prefigured many aspects of modern computing, in-
cluding the web, and emphasized the potential of technology to
augment human thought processes.

Two important thinkers were influenced by Bush’s proposal.
J.C.R. Licklider further advanced the concept of human-machine
cooperation in his influential work onman-computer symbiosis [50].
Licklider envisioned a future where humans would handle planning
and judgment taskswhilemachines would process data and perform
calculations at unprecedented speeds. This collaboration aimed to
improve decision-making efficiency and accuracy, illustrating the
profound potential of human-machine partnerships.

Building on Bush’s vision, Douglas Engelbart introduced the
idea of bootstrapping, wherein tools are designed not only to assist
humans directly but also to facilitate the creation of better tools
[30], leading to Engelbart proposing many of modern computer’s
affordances in the “Mother of all demos” [31].

In the footsteps of these thinkers, Human-Computer Interaction
works on making humans more productive through technology
[40, 82].

3.3 Robotics, Human-Robot Interaction, and the
DARPA Grand Challenges

In physical domains and robotics, the Defense Advanced Research
Projects Agency (DARPA)’s Grand Challenges demonstrate the
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principles of augmentation. The DARPA Robotics Challenge al-
lowed human operators to issue high-level commands, such as
drive forward, while the robots autonomously handled the fine-
grained motion control [47]. This division of labor capitalized on
human judgment and machine precision, enabling significant ad-
vancements in autonomous systems.

The DARPA Subterranean Challenge extended this idea further
by integrating teams of robots with a human operator who had
limited observability of the robots’ actions [66]. This setup required
effective communication and coordination, emphasizing the im-
portance of human oversight in complex, dynamic environments.
The interaction between humans and robots constitutes the field of
Human-Robot Interaction (see, e.g., Ajoudani et al. [4], Lasota et al.
[48]).

3.4 Current Evaluations in Artificial
Intelligence

Hence, we may see the reasons for a smaller number of centaur eval-
uations in the intellectual history (Turing vs.Bush/Lickleider/Engelbardt).
We also saw in the Introduction that incentives (availability of im-
itation datasets, easy conceptualization of a gold standard) are
pointing toward the evaluation of imitation. Centaur evaluation
is, however, not without precedent, as we saw in the Grand Chal-
lenges. Centaurs are evaluated regularly in other fields of computer
science, such as Human-Computer Interaction and Human-Robot
Interaction.

4 WHY THERE SHOULD BE MORE CENTAUR
EVALUATIONS

We now make our case for centaur evaluations. First, centaur eval-
uations allow to evaluate AI more thoroughly (Section 4.1), they
allow direct testing of human-centered desiderata like interpretabil-
ity, human-augmentation, and helpfulness (Section 4.2), and, for
us most importantly, recenter technological development toward
human augmentation, while helping policymakers (Section 4.3).

4.1 Centaur Evaluations Can Be Harder
Current evaluations “saturate”, that is, AI models rapidly achieve
very good results on benchmarks, leading to concerns that soon,
humans might not be able to evaluate models [55, 62]. We contend
that this worry might be a consequence of how restrictive current
evaluation formats are rather than an imbalance in capability be-
tween humans andmachine learning systems. So while benchmarks
might be saturated, benchmark results may not transfer to real-
world tasks because much of the hardness of operation in the real
world stems from complex feedback loops and heterogeneity that
only comes out in interaction with humans. Hence, while we laud
more complex, realistic, and interactive evaluations (e.g., Deng et al.
[25], Drouin et al. [27], Majumder et al. [53], Shao et al. [69], Wijk
et al. [83], Xie et al. [84], Zhou et al. [88]), there are strong rea-
sons to consider centaur benchmarks for harder and more realistic
benchmarks.

One way in which centaur benchmarks can be harder is mecha-
nistic: Humans have more actions and more sensors available than
even the most powerful multimodal models, see Figure 1. Consider
a call center benchmark. Humans are still often able to distinguish

Figure 1: Variation of Brynjolfsson [11], Figure 1. Imitative
benchmarks create a low ceiling for what productive use is
possible with AI, as centaurs can act in strictly more envi-
ronments.

whether they are talking to an AI or a human and will treat AI
differently. In this case, a human replacement evaluation will have
limited success unless the auditive Turing test is passed, and we
can replace most call center workers altogether (more on this in
Section 4.3). Similarly, many security-critical actions are exclusive
to humans, which likely will last into the future. Evaluating inter-
actions with safety-critical systems requires evaluating a centaur.
In contrast to a call center or a security-relevant setting, current
benchmarks look synthetic: school-level [39] and researcher-level
mathematics [33], general knowledge questions [38], and reading
comprehension [28], among others. What they do have in common
is that they have text as input, text as output, and a correct an-
swer. The format of evaluations is restrictive and makes it hard for
humans to provide truly hard evaluations.

4.2 Centaur Evaluations Simplify the
Evaluation of Human-Centered Desiderata

Centaur evaluations also simplify the evaluation of human-centered
desiderata such as explainability, interpretability, or helpfulness.
One such desideratum, explainability, has received attention in pol-
icy for example in the European Union’s AI Act (European Union
[32], Art. 13, compare also Art. 52): “High-risk AI systems shall
be designed and developed in such a way as to ensure that their
operation is sufficiently transparent to enable deployers to inter-
pret a system’s output and use it appropriately.” (emphasis added).
Explainability is measured with explicit reference to humans, in
this case, deployers. On the other hand, much of explainability
evaluation uses proxies of explainability or mechanistic techniques,
compare Casper et al. [16]. With centaur evaluations, explainability
can be directly evaluated as the ability of a human to act together
with the system.

Additionally, current benchmarks cloak achievements in human-
centered development technology. One concrete example is the
learning-to-defer literature, which studies when a machine learning
system should defer to a human for a decision (see Bansal et al. [9]
for a theory model, and compare Bansal et al. [9], De et al. [23],
Keswani et al. [44], Madras et al. [52], Mozannar and Sontag [57],
Okati et al. [58], Vodrahalli et al. [79], Yang et al. [85]). In current
evaluations that do not consider human-AI interplay, learning-to-
defer does not have a benefit. Successful deferral helps in real-world
use, but current evaluations are blind to it.
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Figure 2: Higher marginal productivity of human time leads
to higher wages.

4.3 Centaur Evaluations Positively Impact
Society

Finally, centaur evaluations recenter the direction of progress in
machine learning and can help policymakers.

4.3.1 Directing Technological Change. Technology and automation
play an important role in the inequality of power and wealth [7, 43].
One of the main channels through which inequality arises is that
capital (so any non-human input to production) becomes more
important and is owned by a smaller group than a few decades ago
[5]. We believe that keeping humans productive (as we formalize
in this subsection) is important for machine learning development.

To define human augmentation and human replacement pre-
cise, we will view a centaur benchmark (including task, interaction
model, and score function) of economically relevant tasks through
the lens of triples (𝐾, 𝐿,𝑌 ) where 𝐾 denotes the amount of com-
pute, 𝐿 the amount of time a human time spent, and 𝑌 the perfor-
mance on an economically relevant task3 Regressing output on the
𝑌 = 𝑓 (𝐾, 𝐿), we obtain a function, which we call the production
function of the benchmark. As one of the strong assumptions for
this setting, we assume that 𝑌 is a good proxy for the monetary
benefits of the economically relevant task so that we can compare
𝑌 to wages that a human earns. We propose to use the marginal
value of human time, 𝜕𝑓

𝜕𝐿
as a value of human augmentation. The

reason for this is that, in a competitive market, the wage 𝑤 of a
worker in a productive task given by production function 𝑓 satisfies

𝜕𝑓

𝜕𝐿
(𝐾, 𝐿) = 𝑤. (1)

(To see why (1) holds, assume for example—and contradiction—
𝜕𝑓

𝜕𝐿
(𝐾, 𝐿) > 𝑤 . In this case, raising 𝐿 by 𝜀 costs 𝜀𝑤 , but brings

benefit 𝜀 𝜕𝑓
𝜕𝐿

(𝐾, 𝐿) > 𝜀𝑤 , contradiction individual optimality in a
market.) To motivate that 𝜕𝑓

𝜕𝐿
, which can only be estimated with

a centaur benchmark, can be used to compare models, consider
Figure 2 which sketches production functions for two different
AI models (or interaction modules) 𝑓1 and 𝑓2, for a fixed level of
computation. As a result of optimization, wages are the slope of

3This notation is inspired by macroeconomics. 𝐾 , or capital is here played by compu-
tation, 𝐿 or labor is the human input, 𝑌 or output is the performance on a task. We
refer the interested reader to [65] for more macroeconomic modeling.

the production function. As slopes for 𝑓2 are higher than for 𝑓1, for
any value of human time, wages will be higher under 𝑓2.

Informed by (1), we can give a (slightly informal) definition of
technologies that are human-augmenting and which are human-
replacing. Informally, those that keep the marginal value of human
time, and hence, according to (1), wages, high, are called human-
augmenting. If human time is (close to) irrelevant, the technology
is human-replacing.

Definition 4.1. We call a machine learning systemwith production
function 𝑓 human-augmenting if 𝜕𝑓

𝜕𝐿
≫ 0 for relevant values 𝐾 and

𝐿. If 𝜕𝑓
𝜕𝐿

≈ 0 for relevant values 𝐾 and 𝐿, we call it human-replacing.

Human augmenting technologies are more likely to produce
high wages and sustain economic bargaining power for those who
do not own capital. The point made here is supported by several
economists; see, for example, [1, 2, 11]. Even institutions at the
center of technological disruption call for ways to increase the
number of jobs [22].

Current benchmarks are blind to human augmentation, as they
evaluate 𝑓 (𝐾, 0) or even max𝐾 𝑓 (𝐾, 0). If the goal is to succeed in
current evaluations, there are no incentives for human augmenta-
tion.

4.3.2 Producing Policy-Relevant Artifacts. Centaur benchmarks al-
low us to produce more policy-relevant objects, which we define
here (we leave the actual estimation of the objects for future re-
search). Examples of such objects are:

• 𝑓 (𝐾, 𝐿): task achievement, fixed resources. This is the value
controlling for resource use (compare Coleman et al. [21] for
monitoring use of compute)

• max𝐾,𝐿 𝑓 (𝐾, 𝐿): maximal task achievement. The optimal per-
formance of any centaur.

• 𝜕𝑓

𝜕𝐿
(𝐾, 𝐿): human augmentation. The expected wage in a

thought experiment is informed by (1).

Using 𝜕𝑓

𝜕𝐿
(𝐾, 𝐿) as a benchmark allows to assess the marginal

value of human time for a task. This can inform retraining of hu-
mans: If a new very performant (𝑓 (𝐾, 𝐿) ≫ 0), human-replacing
( 𝜕𝑓
𝜕𝐿

= 0) technology arises, retraining toward other tasks is helpful.
Conversely, if a new performant, human-augmenting ( 𝜕𝑓

𝜕𝐿
≫ 0)

technology is introduced, this is a signal to train more humans in
this task.

Even beyond tasks for which we cannot assume that success is a
good proxy of monetary value (as for most tasks), marginal value is
helpful. Consider a centaurized version of MMLU [38]. Evaluate the
difference in performance between 15 minutes and 30 minutes of
human time together with a chatbot to solve parts of a benchmark.
We can view this as a finite-difference approximation of 𝜕𝑓

𝜕𝐿
(𝐾, 𝐿).

If a system does not benefit at all from human input, we should see
that this measure will be close to zero. Is it large, then humans will
bring significant value to the system. If there is high human value,
it might be a good sign for the system in work with knowledge
workers.

4.3.3 Providing Transcripts to Train Humans. Finally, centaur eval-
uations yield transcripts, which help human inductive learning
for better cooperation with systems. We discuss the possibilities of
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(a) Crowd Workers (b) RCTs (c) Competitions

Figure 3: Three models for centaur benchmarks.

Representativity Quality Affordability

Crowd work ✓∗ ✓∗

Trial ✓ ✓∗ ✓∗

Competition ✓ ✓

Table 1: Three Models for centaur evaluations.

transcripts further in the competition model of centaur benchmarks
below; see Section 5.3.

5 HOW TO RUN CENTAUR BENCHMARKS?
A first concern about centaur evaluation and costs. In this section,
we relate centaur benchmarks to existing infrastructure from crowd
work, randomized controlled trials, and competitions, which we
call models of centaur evaluation. We summarize the comparative
advantages of the models on representativity of tasks, quality of
human participation, and cost in Table 1. We also discuss specific
challenges of the approaches and how they can be overcome.

This section focuses on how to find humans that partake in
centaur evaluations. We are confident that the research community
will develop successful interfaces, as it has done in other domains
(e.g., Pei et al. [60], Perry [61], Tkachenko et al. [74] for text domains,
see Shao et al. [69] for interaction models for centaur evaluations).
We also do not focus on the design of tasks but give examples in
Appendix A.

5.1 Centaur Evaluations via Crowd Work
A first model of centaur evaluations relies on the infrastructure
of crowd work, e.g., from Amazon Mechanical Turk. In this case,
crowd workers choose to participate in centaur benchmarks for
reimbursement and are incentivized to solve a task through a score-
dependent bonus (Figure 3a). The distribution of the performance
of different crowd workers is reported as the centaur evaluation.

This approach has benefits in standardization: Tasks, participant
selection criteria, and time used can be specified. On the flip side,
this means that tasks are less representative of real use.

Both the quality and cost of centaur evaluations with crowd
workers will depend on the qualifications of crowd workers doing
the task. While tests without particular qualifications may be af-
fordable, professional qualifications (e.g., in software engineering)
might be more expensive.

5.2 Centaur Evaluations via Trials
Centaur benchmarks with panels might still be quite expensive
because humans are not productive beyond the evaluation when

completing it. Randomized controlled trials may be used, in combi-
nation with causal inference techniques, to run centaur evaluations
(Figure 3b).

In a classical randomized controlled trial (RCT), humans are
assigned to a treatment arm, and differences in (potentially condi-
tionally) average outcomes are determined [37]. For example, the
difference in the likelihood of a click may be compared for differ-
ent user interfaces on a web application. It is not direct to put the
estimation of an object like a production function 𝑓 (𝐾, 𝐿) or even
human augmentation in this framework.

Thankfully, causal inference techniques can help for such esti-
mation. (See Ackerberg et al. [3] for related work on production
function estimation in Economics.) To illustrate the possibility, as-
sume we are running an RCT which treats software engineers to
different bonuses for each minute they finish before a certain time.
Engineers choose the amount of time and computation they use,
partly based on features of the task that are unobservable to us,
leading to bias in naïve estimation of 𝑓 (𝐾, 𝐿). Learning a model
of how engineers choose time and compute based on treatments
allows to debias estimates, compare Joshua D. Angrist and Rubin
[42].

5.3 Centaur Evaluations via Competitions
A quite different approach to centaur evaluations is the leaderboard,
inspired by platforms like kaggle.com (Figure 3c). While the former
two appraoches aim to choose a representative sample of humans
to complete a task, leaderboards optimize both the AI system and
the human.

The usefulness of a leaderboard does not necessarily lie in the
numeric evaluation results like in the first two approaches but
rather in the transcripts that are produced. Humans can learn from
the best humans using AI very productively for a task and improve
their actions—a success of social learning.

An important feature of centaur benchmarks, we predict, is some
amount of adaptability to the discovery of unintended ways to
solve a task (glitches, jailbreaks, shortcuts, etc.). We are optimistic
that such norms can be found in an online community, as a par-
allel case of the speed run community shows. In a speed run in
a videogame, a human tries to “complete” a video game, that is,
reach a particular game state as fast as possible, to rank in a global
leaderboard. Leaderboards such as speedrun.com have human mod-
erators who determine which glitches, shortcuts, and hardware
setups are allowed and which are forbidden (see Scully-Blaker [68]
on the speedrunning community)

Beyond the three models outlined here, additional work, we are
optimistic, will help make centaur benchmarks more affordable,
reliable, and representative.

The rest of this position paper considers objections to our argu-
ment.

6 ALTERNATIVE VIEWPOINTS
We discuss two additional arguments in opposition to our argument.
The first argument Section 6.1 roughly states that centaurs do not
improve performance. The second focuses on statistical issues and
contends that centaur evaluations do not work.

kaggle.com
speedrun.com
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1. Human 3. Centaur 5. Machine
2. augmented

Human
4. augmented
Machine

Figure 4: Five stages of automation.

6.1 Human Augmentation Does Not Exist
Argument. There are many tasks for which centaurs are demon-
strably worse than algorithms alone. For example, [45, 51] show that
biases of humans lead to worse performance than in combination
with AI in several settings of social relevance. Judges performworse
than counterfactual decisions made by algorithms alone [6, 85], ra-
diology screening algorithms outperform radiologists [86], and
human-AI systems might be less fair than algorithms alone [54].
Such a viewpoint led Cass Sunstein to propose to “governance by
algorithm”, absent any human biases (2021).

Rebuttal. This argument only highlights that centaurs’ perfor-
mance is task-dependent (an observation that [24] formulates).
While the argument lists examples where centaurs do not perform
well, there are many tasks for which centaurs outperform humans
and/or AI. Examples, where such human uplift was demonstrated,
are in child protective services reviews [35], call centers [12], en-
trepreneurs [59], and material scientists Toner-Rodgers [75].

We also believe that a presumption of a failure of centaurs steers
technology in the wrong direction. We rather think of technological
automation in five stages of automation, see Figure 4 through which
all tasks proceed at different speeds. First, humans are doing the
task, and technology is too immature to be at all helpful. With more
and more capable technology and well-trained humans, centaur
performance increases. Finally, machines are capable enough to not
benefit from human involvement anymore. One example of such
automation is chess. In the last 80 years, we have gone through all
five stages of automation for the game of chess and the use of chess
agents. During the war, chess did not benefit from computation, and
humans were playing it by themselves. More and more, computers
helped humans, and in the 2000s, centaur chess tournaments tested
different centaurs against each other, see an interview about this
time [70]. Roughly ten years later, there is no benefit to centaurs
compared to computers alone, according to [29].

While sufficient engineering effort can move all tasks through
the stages of automation, how this transition works depends on
the machine learning community. If the only goal is to reach the
final stage of automation (“machine”), there will be no productive
centaur in the middle because there is no technology for this stage
of automation. With the current culture of machine learning evalu-
ation, we see low performance in stages 2 to 4 while waiting for
stage 5, at which point large inequality in wealth and power arises.
We believe presuming that centaurs can perform is a societally
beneficial assumption.

6.2 Centaur Evaluations Have Insufficient
Statistical Power

Argument. Benchmarks are the core of machine learning method-
ology (see Kolter [46], Rahimi and Recht [63]), so we should be
careful with changes to evaluation. Centaur benchmarks, at their

core, are glorified RCTs. They suffer from the same issues these
have: brittleness and dependence on experimental details [77, 78],
noisy data, and high sample complexity even for moderately tight
comparisons of models.

Rebuttal. On this point, we first point out that centaur evaluations
are more than RCTs, see Sections 5.2 and 5.3.

On the other points, first, on brittleness. The argument cites
literature from the behavioral sciences (in particular, social psy-
chologists). Note that centaur evaluations do not face the same
challenges as behavioral sciences, as they do not involve human
choice as an expression of their preference. In particular, in a cen-
taur benchmark, results are scored as correct or not.4 It might be
that a particular interaction model or a particular way to commu-
nicate the task leads to task improvements. This, however, is not
an instance of the brittleness of results but an integral part of what
centaurs optimize for. Small changes that make systems work better
with humans are part of the design space in centaur evaluations.

Second, on sample complexity. Results might indeed be noisy
and/or conditional on a high number of covariates because humans
are very heterogeneous. We agree that sample complexity might
be substantial (or as high as in other studies involving humans).
This, however, does not run counter to our call for more centaur
benchmarks. Currently, there are, to our knowledge, no centaur
benchmarks for large language models. We believe that some cen-
taur benchmarks will be worth paying for sufficiently many human
samples.

7 SUMMARY
Evaluations are crucial for machine learning methodology. Current
benchmarks consider machine learning systems in isolation from
humans, leading to easily saturated benchmarks, hard-to-formalize
human-centered desiderata, and a bias of technological develop-
ment toward human replacement instead of human augmentation.
Human replacement exacerbates an existing imbalance of power
and wealth.

We argue that all of these concerns about current evaluations
are addressed by centaur evaluations in which humans and machine
learning systems complete tasks together in a shared environment.
Centaur evaluations consist of a task, an interaction module, a
scoring function, and a transcript module. They can be run based
on existing infrastructure for crowdsourcing, RCTs, and machine
learning competitions.

Centaur evaluations allow us to identify those tasks where hu-
man augmentation is most beneficial, as well as those in which ma-
chine learning systems outperform humans. The current practice
of machine learning system evaluation leads to under-performing
centaurs until full automation, upon which many humans lose
economic bargaining power and income.

We call on the machine learning community to evaluate systems
using centaur evaluations, where humans and AI jointly solve a
task in a shared environment.

4If humans make the choice for how to score outputs, such as in LM Arena Chiang et al.
[19], the criticism from the behavioral sciences made here applies. Issues of human
scoring are not the focus of this position paper.
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A EXAMPLES OF CENTAUR EVALUATIONS
We list additional examples of centaur evaluations, which are each
inspired by either social science studies on human augmentation
of technology or non-centaur evaluations.

A.1 Centaurized Evaluations
Example (Inspired by Guha et al. [36]). A lawyer works alongside
an AI contract analysis system to identify potential risks, inconsis-
tencies, or missing clauses in legal documents (task). The lawyer
can ask questions, request clarifications, and accept or reject AI
suggestions through a structured review interface (interaction). The
benchmark score is determined by the accuracy of risk identifica-
tion, the time spent by the lawyer, and the computational costs
associated with the AI model (scoring). A transcript of the lawyer-
AI interaction can be stored to understand patterns in effective
collaboration (transcript).

Example (Inspired by Cai et al. [15]). A researcher is given a set of
papers and collaborates with an AI system to extract key insights,
generate summaries, and identify relevant citations for a literature
review (task). The researcher and AI interact via a text-based in-
terface where the AI provides ranked lists of references, extracts
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key points, and the researcher can refine queries or adjust sum-
marization parameters (interaction). The performance is graded
based on the relevance and accuracy of extracted information, the
efficiency of the process, and the cost in terms of human effort
and AI-generated tokens (scoring). The transcript of interactions,
including refinements and queries, is exported (transcript).
Example (Inspired by Li et al. [49]). A financial planner works with
an AI-powered financial model to provide investment recommenda-
tions tailored to a client’s risk profile and goals (task). The financial
planner receives AI-generated insights, including risk analyses and
portfolio optimizations, and can modify, approve, or reject them
through a structured advisory interface (interaction). Performance
is graded based on investment outcomes, client satisfaction, time
spent on decisions, and computational costs (scoring). Transcripts
of these interactions are shared (transcript).
Example (Inspired by Zhang et al. [87]). A security analyst col-
laborates with an AI threat detection system to solve capture-the-
flag problems (task). The AI system flags suspicious activities and
provides automated recommendations while the human analyst
interprets, refines, and executes security measures (interaction).
The accuracy of threat detection, speed of response, and costs in
terms of computational resources and human oversight are evalu-
ated (scoring). The transcript records and shares decision-making
patterns (transcript).
Example (Inspired by Jimenez et al. [41]). A software engineer
collaborates with an AI debugging assistant to fix Github issues
(task). The AI suggests possible bug locations, offers code fixes and

explains error causes, while the human verifies, modifies, or rejects
suggestions (interaction). The benchmark evaluates debugging ac-
curacy, time efficiency, and human-AI interaction costs (scoring).
Transcripts show the messages that humans send to the system,
and the history of edits (transcript).

A.2 Novel Centaur Evaluations
Example (Inspired by Brynjolfsson et al. [12]). A support agent
uses an AI assistant to resolve customer queries more efficiently
(task). The AI suggests responses, retrieves relevant documentation,
and assists in troubleshooting, while the human agent makes final
decisions and personalizes responses (interaction). The benchmark
score is based on resolution accuracy, customer satisfaction, and
cost in terms of human effort and AI-generated tokens (scoring).
Transcripts contained exchanged messages and text transcripts,
conditional on consent, of the client conversation (transcript).

Example (Inspired by Yu et al. [86]). A radiologist collaborates with
an AI-powered image analysis tool to diagnose medical conditions
from X-rays or MRIs (task). The radiologist and the AI system com-
municate through an interface where the AI can highlight potential
areas of concern, provide confidence scores, and suggest diagnoses
while the human can query, approve, or override suggestions (inter-
action). The evaluation consists of diagnostic accuracy, time taken
per case, and any associated costs for human-AI interaction (scor-
ing). Transcripts of these interactions, including decision-making
paths and disagreements, are shared. (transcript).
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